Contents

Ţ	wau	lemauca	ii Methods of Signal Processing in Neuroscience	1
	1.1	Genera	al Remarks	1
	1.2	Nonsta	ationarity of Neurophysiological Data	2
	1.3	Wavele	ets in Basic Sciences and Neuroscience	4
	1.4	Autom	natic Processing of Experimental Data in Neuroscience	5
	1.5	Brain-	Computer Interfaces	6
	1.6	Topics	to Consider	7
	Refer	ences		9
2	Brief Tour of Wavelet Theory			15
	2.1	Introdu	uction	15
	2.2	From I	Fourier Analysis to Wavelets	16
	2.3	Contin	uous Wavelet Transform	26
		2.3.1	Main Definitions: Properties of the Continuous	
			Wavelet Transform	26
		2.3.2	Mother Wavelets	32
		2.3.3	Numerical Implementation of the Continuous	
			Wavelet Transform	35
		2.3.4	Visualisation of Wavelet Spectra: Wavelet	
			Spectra of Model Signals	45
		2.3.5	Phase of the Wavelet Transform	52
	2.4	Discre	te Wavelet Transform	63
		2.4.1	Comparison of the Discrete and Continuous	
			Wavelet Transforms	63
		2.4.2	General Properties	65
	Refer	ences		72
3	Anal	ysis of S	Single Neuron Recordings	77
	3.1 Introduction			77
	3.2	Wavel	et Analysis of Intracellular Dynamics	78
		3.2.1	Interference Microscopy and Subcellular Dynamics	78

Contents

		3.2.2	Modulation of High Frequency Oscillation		
			by Low Frequency Processes	80	
		3.2.3	Double Wavelet Transform and Analysis		
			of Modulation	81	
		3.2.4	Modulation of Spike Trains by Intrinsic Neuron		
			Dynamics	83	
	3.3	Informa	ation Encoding by Individual Neurons	86	
		3.3.1	Vibrissae Somatosensory Pathway	86	
		3.3.2	Classification of Neurons by Firing Patterns	88	
		3.3.3	Drawbacks of the Traditional Approach		
			to Information Processing	89	
		3.3.4	Wavelet Transform of Spike Trains	90	
		3.3.5	Dynamical Stability of the Neuronal Response	93	
		3.3.6	Stimulus Responses of Trigeminal Neurons	96	
	3.4	Wavele	t Coherence for Spike Trains: A Way to Quantify		
			nal Connectivity	101	
		3.4.1	Wavelet Coherence of Two Point Processes	102	
		3.4.2	Measure of Functional Coupling Between		
			Stimulus and Neuronal Response	104	
		3.4.3	Functional Connectivity of Gracilis Neurons		
			to Tactile Stimulus	105	
	Refer	ences		117	
4	Closs	ification	of Neuronal Spikes from Extracellular Recordings	121	
4	4.1		ction	121	
	4.2		l Principles of Spike Sorting	122	
	4.3		Detection over a Broadband Frequency Activity	124	
	4.4		Spike Sorting	127	
	4.5		al Component Analysis as Spike-Feature Extractor	130	
	4.5	4.5.1	How It Works	130	
		4.5.1	Possible Pitfalls	132	
	4.6		t Transform as Spike-Feature Extractor	135	
	4.0	4.6.1	Wavelet Spike Classifier	135	
		4.6.2	Potential Problems	136	
	4.7		t Shape-Accounting Classifier	138	
	4.8		nance of PCA vs WT for Feature Extraction	139	
	4.9		vity of Spike Sorting to Noise	142	
	4.7	4.9.1	Impact of High/Low Frequency Noise on PCA	142	
		4.7.1	and WT	143	
		4.9.2	Proper Noise Filtering May Improve Spike Sorting	143	
	4.10			143	
	4.10	Optimal Sorting of Spikes with Wavelets and Adaptive Filtering			
		4.10.1	-	147 147	
		4.10.1	Noise Statistics and Spike Sorting		
		₩. 1 U. Z	FAIAIDED IC WAYER ADILITY WILL MUYANCEL FIREINIY	170	

Contents

	4.11		orting by Artificial Neural Networks	154
		4.11.1	General Approach	154
		4.11.2	Artificial Neural Networks	156
		4.11.3	Training the Artificial Neural Network	159
		4.11.4	Algorithm for Spike Sorting Using Neural Networks	160
	4.12	Artificia	al Wavelet Neural Networks for Spike Sorting	163
		4.12.1	Structure of Wavelet Neural Networks	164
		4.12.2	Wavelet Neural Networks	164
	Refer	ences		174
5	Wave	let Appr	roach to the Study of Rhythmic Neuronal Activity	177
-	5.1		ction	177
	5.2		rinciples of Electroencephalography	178
	J. _	5.2.1	Electrical Biopotential: From Neuron to Brain	179
		5.2.2	Application of EEG in Epilepsy Research	180
	5.3		Principles of Time–Frequency Analysis of EEG	182
	5.5			
		5.3.1	The Need for Mathematical Analysis of EEG	182
		5.3.2	Time-Frequency Analysis of EEG: From	
			Fourier Transform to Wavelets	183
		5.3.3	Time-Frequency Analysis of Spike-Wave	
			Discharges by Means of Different Mother Wavelets	187
	5.4		ations of Wavelets in Electroencephalography	195
		5.4.1	Time-Frequency Analysis of EEG Structure	196
		5.4.2	Automatic Detection of Oscillatory Patterns	
			and Different Rhythms in Pre-recorded EEG	196
		5.4.3	Classification of Oscillatory Patterns	197
		5.4.4	Real-Time Detection of Oscillatory Patterns in EEG	197
		5.4.5	Multichannel EEG Analysis of Synchronization	
			of Brain Activity	198
		5.4.6	Artifact Suppression in Multichannel EEG	
			Using Wavelets and Independent Component Analysis	198
		5.4.7	Study of Cognitive Processes	199
	Refer		Study of Cognitive Frontiers	201
_				
6			ncy Analysis of EEG: From Theory to Practice	211
	6.1		ction	211
	6.2		tory Activity Prior to Epileptic Seizures	212
		6.2.1	Description of Experiment	212
		6.2.2	Time-Frequency Wavelet Analysis of Cortical	
			and Thalamic SWDs	213
		6.2.3	Delta and Theta Precursors of SWD	
			as Measured in the Cortex and Thalamus	216
	6.3	Time-F	Frequency Analysis of Sleep Spindles	
		and Spi	ndle-Like Oscillatory Patterns	22
		6.3.1	Relationship Between Sleep Spindles, 5-9 Hz	
			Oscillations, and SWDs	221
		6.3.2	Experimental Procedure	

xii Contents

		6.3.3	Time-Frequency Analysis of Spindle-Like	
			Oscillatory Patterns: Comparison of Different	
			Mother Wavelets	223
		6.3.4	Intra-spindle Frequency Dynamics in Epileptic	
			and Non-epileptic Rat Strains	231
		6.3.5	Age-Related Changes in the Time-Frequency	
			Structure of Sleep Spindles	233
	6.4	Practica	al Notes Concerning Application	
			Continuous Wavelet Transform	
		in Time	-Frequency EEG Analysis	235
		6.4.1	Complex or Real Mother Wavelet	236
		6.4.2	Shape of Mother Wavelet	236
		6.4.3	Width of Mother Wavelet	236
	6.5		ication of Sleep Spindle Events by Means	
			ptive Wavelet Analysis	237
		6.5.1	Construction of Adaptive Wavelet Basis	
		*	("Spindle Wavelet") for Automatic Recognition	
			of Sleep Spindles	237
		6.5.2	Identification of Two Spindle Types	
		0.0.2	with the Aid of Two Adaptive "Spindle Wavelets"	239
		6.5.3	Two Types of Sleep Spindles and Their	
		0.0.0	Relevance to SWD	240
	6.6	Synchr	onous Dynamics of Epileptic Discharges:	
	0.0		ation of Time-Scale Synchronization Approach	242
	Refer			248
7	A t-o-	matia D	iagnostics and Processing of EEG	253
′				
	7.1	Introduction		
	7.2	7.2.1	General Aspects of Automatic SWD Detection	255
		7.2.1	•	255
		700	in EEG	233
		7.2.2	Off-Line Wavelet-Based Algorithm for Automatic Detection of SWDs	256
		722	Performance of the Method.	
	7.3	7.2.3	Computer Interface for On-Line Diagnostics	239
	7.3		leptic Seizures	260
		-	On Line SWD Detection Algorithm	260
		7.3.1	On-Line SWD Detection Algorithm	200
		7.3.2	Experimental Verification of the Algorithm	264
	. .		and On-Line SWD Diagnostics	
	7.4	Autom	natic Detection of Sleep Spindles by Adaptive Wavelets	207
	7.5	Automatic Detection and Discrimination of 5–9 Hz		
	7.		ations and Sleep Spindles	271 273
	7.6		ff Intermittency of Thalamo-Cortical Oscillations	213
		7.6.1	Nonlinear Dynamics of SWDs, Sleep Spindles, and 5–9 Hz Oscillations	273

Contents xiii

		7.6.2	Intermittent Dynamics of SWDs Under	
			the Influence of a Pro-absence Drug (Vigabatrin)	276
		7.6.3	Mechanisms of Intermittent Behavior	
			in the Thalamo-Cortical Neuronal Network	278
	7.7	Serial Id	dentification of EEG Patterns Using Adaptive	
		Wavelet	t Analysis	279
		7.7.1	Adaptive Wavelet-Based Technique	
			and the Serial Method	280
		7.7.2	Experimental Validation of the Serial Method	284
	7.8	Artifact	Suppression in Multichannel EEG Using	
		Wavelet	t-Enhanced Independent Component Analysis	286
		7.8.1	Independent Component Analysis in EEG Studies	287
		7.8.2	ICA-Based Artifact Suppression	288
		7.8.3	Wavelet-Enhanced ICA (wICA) for Artifact	
			Suppression	290
		7.8.4	Data Collection and Numerical Tools	
			for Testing Connectivity	293
		7.8.5	Suppression of Artifacts by ICA and wICA Methods	295
		7.8.6	Recovering Brain Signals in the Presence of Artifacts	299
		7.8.7	Power Spectrum Distortion	301
		7.8.8	Artifact Suppression and Non-local	
			Characteristics Derived from EEG	302
		7.8.9	Conclusion	304
	Refer	ences		306
8	Conc	lusion		313
				314
ſη	dex			315