Contents

Pre	face a	nd Intro	oduction	vii
1	Vecto	or Alget	ora I: Scalars and Vectors	1
	1.1	_	s and Vectors	1
	1.2	Additi	on of Vectors	4
		1.2.1	Sum of Two Vectors: Geometrical Addition	4
	1.3	Subtra	ction of Vectors	6
	1.4	Compo	onents and Projection of a Vector	7
	1.5	Compo	onent Representation in Coordinate Systems	9
		1.5.1	Position Vector	9
		1.5.2	Unit Vectors	10
		1.5.3	Component Representation of a Vector	11
		1.5.4	Representation of the Sum of Two Vectors	
			in Terms of Their Components	12
		1.5.5	Subtraction of Vectors in Terms of their Components	13
	1.6	Multip	olication of a Vector by a Scalar	14
	1.7	Magni	itude of a Vector	15
2	Vect	or Algel	bra II: Scalar and Vector Products	23
	2.1	Scalar	Product	23
		2.1.1	Application: Equation of a Line and a Plane	26
		2.1.2	Special Cases	26
		2.1.3	Commutative and Distributive Laws	27
		2.1.4	Scalar Product in Terms of the Components of the Vectors.	27
	2.2	Vector	r Product	30
		2.2.1	Torque	30
		2.2.2	Torque as a Vector	31
		2.2.3	Definition of the Vector Product	
		2.2.4	Special Cases	
		2.2.5	Anti-Commutative Law for Vector Products	
		2.2.6	Components of the Vector Product	34

x Contents

3	Func	ctions .		39
	3.1	The M	lathematical Concept of Functions	
		and its	Meaning in Physics and Engineering	39
		3.1.1	Introduction	39
		3.1.2	The Concept of a Function	40
	3.2	Graph	ical Representation of Functions	42
		3.2.1	Coordinate System, Position Vector	42
		3.2.2	The Linear Function: The Straight Line	43
		3.2.3	Graph Plotting	44
	3.3		ratic Equations	
	3.4		etric Changes of Functions and Their Graphs	49
	3.5		e Functions	
	3.6	Trigor	nometric or Circular Functions	
		3.6.1	Unit Circle	
		3.6.2	Sine Function	
		3.6.3	Cosine Function	
		3.6.4	Relationships Between the Sine and Cosine Functions	
		3.6.5	Tangent and Cotangent	
		3.6.6	Addition Formulae	
	3.7		e Trigonometric Functions	
	3.8	Functi	ion of a Function (Composition)	66
4	Expe	onential	, Logarithmic and Hyperbolic Functions	71
	4.1	Power	rs, Exponential Function	71
		4.1.1	Powers	71
		4.1.2	Laws of Indices or Exponents	72
		4.1.3	Binomial Theorem	73
		4.1.4	Exponential Function	73
	4.2	Logar	ithm, Logarithmic Function	, 76
		4.2.1	Logarithm	
		4.2.2	Operations with Logarithms	
		4.2.3	Logarithmic Functions	79
	4.3	Hyper	rbolic Functions and Inverse Hyperbolic Functions	80
		4.3.1	Hyperbolic Functions	80
		4.3.2	Inverse Hyperbolic Functions	83
5	Diffe	erential	Calculus	87
	5.1	Seque	ences and Limits	87
		5.1.1	The Concept of Sequence	
		5.1.2	Limit of a Sequence	
		5.1.3	Limit of a Function	
		5.1.4	Examples for the Practical Determination of Limits	
	5.2	Conti	nuity	93

Contents xi

	5.3	Series		. 94
		5.3.1	Geometric Series	. 95
	5.4	Differe	entiation of a Function	. 96
		5.4.1	Gradient or Slope of a Line	. 96
		5.4.2	Gradient of an Arbitrary Curve	
		5.4.3	Derivative of a Function	. 99
		5.4.4	Physical Application: Velocity	. 100
		5.4.5	The Differential	. 101
	5.5	Calcula	ating Differential Coefficients	. 102
		5.5.1	Derivatives of Power Functions; Constant Factors	. 103
		5.5.2	Rules for Differentiation	
		5.5.3	Differentiation of Fundamental Functions	. 108
	5.6	Higher	Derivatives	. 114
	5.7	Extrem	ne Values and Points of Inflexion; Curve Sketching	. 115
		5.7.1	Maximum and Minimum Values of a Function	. 115
		5.7.2	Further Remarks on Points of Inflexion (Contraflexure)	. 119
		5.7.3	Curve Sketching	. 120
	5.8	Applic	ations of Differential Calculus	
		5.8.1	Extreme Values	. 123
		5.8.2	Increments	
		5.8.3	Curvature	. 125
		5.8.4	Determination of Limits by Differentiation:	
			L'Hôpital's Rule	
	5.9	Furthe	r Methods for Calculating Differential Coefficients	
		5.9.1	Implicit Functions and their Derivatives	
		5.9.2	Logarithmic Differentiation	
	5.10	Parame	etric Functions and their Derivatives	. 131
			Parametric Form of an Equation	
		5.10.2	Derivatives of Parametric Functions	. 136
	. .			1.45
•			culus	
	6.1		rimitive Function	
		6.1.1	Fundamental Problem of Integral Calculus	
	6.2		rea Problem: The Definite Integral	. 149
	6.3		mental Theorem	151
			Differential and Integral Calculus	
	6.4		efinite Integral	
		6.4.1	Calculation of Definite Integrals from Indefinite Integrals.	
		6.4.2	Examples of Definite Integrals	
	6.5		ds of Integration	
		6.5.1	Principle of Verification	
		6.5.2	Standard Integrals	. 161

xii Contents

		6.5.3 Constant Factor and the Sum of Functions	162
		6.5.4 Integration by Parts: Product of Two Functions	163
		6.5.5 Integration by Substitution	166
		6.5.6 Substitution in Particular Cases	168
		6.5.7 Integration by Partial Fractions	172
	6.6	Rules for Solving Definite Integrals	177
	6.7	Mean Value Theorem	
	6.8	Improper Integrals	
	6.9	Line Integrals	183
7	Appli	ications of Integration	
	7.1	Areas	
		7.1.1 Areas for Parametric Functions	
		7.1.2 Areas in Polar Coordinates	
		7.1.3 Areas of Closed Curves	
	7.2	Lengths of Curves	
		7.2.1 Lengths of Curves in Polar Coordinates	
	7.3	Surface Area and Volume of a Solid of Revolution	
	7.4	Applications to Mechanics	
		7.4.1 Basic Concepts of Mechanics	
		7.4.2 Center of Mass and Centroid	
		7.4.3 The Theorems of Pappus	
		7.4.4 Moments of Inertia; Second Moment of Area	215
8	_	or Series and Power Series	
	8.1	Introduction	
	8.2	Expansion of a Function in a Power Series	
	8.3	Interval of Convergence of Power Series	
	8.4	Approximate Values of Functions	
	8.5	Expansion of a Function $f(x)$ at an Arbitrary Position	
	8.6	Applications of Series	
		8.6.1 Polynomials as Approximations	
		8.6.2 Integration of Functions when Expressed as Power Series	
		8.6.3 Expansion in a Series by Integrating	244
9	Com	plex Numbers	
	9.1	Definition and Properties of Complex Numbers	
		9.1.1 Imaginary Numbers	
		9.1.2 Complex Numbers	
		9.1.3 Fields of Application	
		9.1.4 Operations with Complex Numbers	
	9.2	Graphical Representation of Complex Numbers	
		9.2.1 Gauss Complex Number Plane: Argand Diagram	
		9.2.2 Polar Form of a Complex Number	253

Contents

xiii

	9.3	Exponential Form of Complex Numbers	256
		9.3.1 Euler's Formula	256
		9.3.2 Exponential Form of the Sine and Cosine Functions	257
		9.3.3 Complex Numbers as Powers	
		9.3.4 Multiplication and Division in Exponential Form	
		9.3.5 Raising to a Power, Exponential Form	
		9.3.6 Periodicity of $re^{j\alpha}$	261
		9.3.7 Transformation of a Complex Number From One Form	
		into Another	
	9.4	Operations with Complex Numbers Expressed in Polar Form	
		9.4.1 Multiplication and Division	
		9.4.2 Raising to a Power	
		9.4.3 Roots of a Complex Number	265
••	T) 100		275
10		rential Equations 6 Differential Equations	
	10.1	Concept and Classification of Differential Equations	
	10.2	Preliminary Remarks	219
	10.3	with Constant Coefficients	201
		10.3.1 Homogeneous Linear DE	201
	10.4	10.3.2 Non-Homogeneous Linear DE	
	10.4	10.4.1 First-Order DEs	
		10.4.2 Second-Order DEs	
	10.5	Some Applications of DEs	
	10.5	10.5.1 Radioactive Decay	
		10.5.1 Radioactive Decay	
	10.6	General Linear First-Order DEs	
	10.6	10.6.1 Solution by Variation of the Constant	
		10.6.2 A Straightforward Method Involving the Integrating	304
		Factor	206
	10.7	Some Remarks on General First-Order DEs	
	10.7	10.7.1 Bernoulli's Equations	
		10.7.2 Separation of Variables	
		10.7.2 Separation of variables	
		10.7.4 The Integrating Factor – General Case	
	10.8	Simultaneous DEs	
	10.8		313
	10.9	of First-Order Simultaneous DEs	210
	10.10	Some Advice on Intractable DEs	
	10.10	Some Advice on milaciable DEs	217
11	Lapla	ace Transforms	323
	11.1	Introduction	323
	11.2	The Laplace Transform Definition	323
	11.3	Laplace Transform of Standard Functions	324

xiv Contents

	11.4	Solution of Linear DEs with Constant Coefficients	. 330
	11.5	Solution of Simultaneous DEs with Constant Coefficients	
12	Emma	tions of Sayanal Variables	
12		tions of Several Variables; al Differentiation; and Total Differentiation	339
	12.1	Introduction	339
	12.2	Functions of Several Variables	
	12.2	12.2.1 Representing the Surface	
		by Establishing a Table of Z-Values	. 341
		12.2.2 Representing the Surface	
		by Establishing Intersecting Curves	. 342
		12.2.3 Obtaining a Functional Expression for a Given Surface	
	12.3	Partial Differentiation	
		12.3.1 Higher Partial Derivatives	
	12.4	Total Differential	
		12.4.1 Total Differential of Functions	
		12.4.2 Application: Small Tolerances	
		12.4.3 Gradient	
	12.5	Total Derivative	
		12.5.1 Explicit Functions	
		12.5.2 Implicit Functions	
	12.6	Maxima and Minima of Functions of Two or More Variables	
	12.7	Applications: Wave Function and Wave Equation	369
		12.7.1 Wave Function	369
		12.7.2 Wave Equation	373
13	Mult	iple Integrals; Coordinate Systems	370
13	13.1	Multiple Integrals	370
	13.1	Multiple Integrals with Constant Limits	
	13.2	13.2.1 Decomposition of a Multiple Integral	501
		into a Product of Integrals	383
	13.3	Multiple Integrals with Variable Limits	
	13.4	Coordinate Systems	
	15.4	13.4.1 Polar Coordinates	
		13.4.2 Cylindrical Coordinates	
		13.4.3 Spherical Coordinates	
	13.5	Application: Moments of Inertia of a Solid	
	_	••	
14		sformation of Coordinates; Matrices	
	14.1	Introduction	
	14.2	Parallel Shift of Coordinates: Translation	
	14.3	Rotation	
		14.3.1 Rotation in a Plane	
		14.3.2 Successive Rotations	
		14.3.3 Rotations in Three-Dimensional Space	41.

Contents

χv

	14.4	Matrix Algebra	. 415
		14.4.1 Addition and Subtraction of Matrices	. 417
		14.4.2 Multiplication of a Matrix by a Scalar	. 418
		14.4.3 Product of a Matrix and a Vector	. 418
		14.4.4 Multiplication of Two Matrices	. 419
	14.5	Rotations Expressed in Matrix Form	. 421
		14.5.1 Rotation in Two-Dimensional Space	. 421
		14.5.2 Special Rotation in Three-Dimensional Space	. 422
	14.6	Special Matrices	
	14.7	Inverse Matrix	. 426
15	Sets e	of Linear Equations; Determinants	. 431
	15.1	Introduction	. 431
	15.2	Sets of Linear Equations	. 431
		15.2.1 Gaussian Elimination: Successive Elimination of	
		Variables	
		15.2.2 Gauss–Jordan Elimination	. 433
		15.2.3 Matrix Notation of Sets of Equations and Determination	
		of the Inverse Matrix	
		15.2.4 Existence of Solutions	
	15.3	Determinants	
		15.3.1 Preliminary Remarks on Determinants	
		15.3.2 Definition and Properties of an n-Row Determinant	
		15.3.3 Rank of a Determinant and Rank of a Matrix	
		15.3.4 Applications of Determinants	. 447
16	Eiger	nvalues and Eigenvectors of Real Matrices	. 453
	16.1	Two Case Studies: Eigenvalues of 2 × 2 Matrices	
	16.2		
	16.3	Worked Example: Eigenvalues of a 3 × 3 Matrix	. 458
	16.4	Important Facts on Eigenvalues and Eigenvectors	. 460
17	Vecto	or Analysis: Surface Integrals, Divergence, Curl and Potential.	
	17.1	<u> </u>	
	17.2	Ç	
	17.3	Special Cases of Surface Integrals	
		17.3.1 Flow of a Homogeneous Vector Field Through a Cuboid.	. 468
		17.3.2 Flow of a Spherically Symmetrical Field Through	470
		a Sphere	
	17.4	17.3.3 Application: The Electrical Field of a Point Charge	
	17.4	General Case of Computing Surface Integrals	
	17.5	Divergence of a Vector Field	
	17.6	Gauss's Theorem	
	17.7	Curl of a Vector Field	
	17.8	Stokes' Theorem	. 486

xvi Contents

	17.9	Potential of a Vector Field	487
	17.10	Short Reference on Vector Derivatives	490
18	Four	ier Series; Harmonic Analysis	
	18.1	Expansion of a Periodic Function into a Fourier Series	
		18.1.1 Evaluation of the Coefficients	
		18.1.2 Odd and Even Functions	
	18.2	Examples of Fourier Series	
	18.3	Expansion of Functions of Period 2L	
	18.4	Fourier Spectrum	504
19	Four	ier Integrals and Fourier Transforms	509
	19.1	Transition from Fourier Series to Fourier Integral	
	19.2	Fourier Transforms	
		19.2.1 Fourier Cosine Transform	511
		19.2.2 Fourier Sine Transform, General Fourier Transform	512
		19.2.3 Complex Representation of the Fourier Transform	
	19.3	Shift Theorem	515
	19.4	Discrete Fourier Transform, Sampling Theorems	516
	19.5	Fourier Transform of the Gaussian Function	516
20	Prob	ability Calculus	519
	20.1	Introduction	
	20.2	Concept of Probability	
		20.2.1 Random Experiment, Outcome Space and Events	
		20.2.2 The Classical Definition of Probability	
		20.2.3 The Statistical Definition of Probability	
		20.2.4 General Properties of Probabilities	
		20.2.5 Probability of Statistically Independent Events.	
		Compound Probability	525
	20.3	Permutations and Combinations	
		20.3.1 Permutations	
		20.3.2 Combinations	
21	Proh	ability Distributions	531
	21.1	Discrete and Continuous Probability Distributions	
		21.1.1 Discrete Probability Distributions	
		21.1.2 Continuous Probability Distributions	
	21.2	Mean Values of Discrete and Continuous Variables	
	21.3	The Normal Distribution as the Limiting Value	
	5	of the Binomial Distribution	539
		21.3.1 Properties of the Normal Distribution	
		21.3.2 Derivation of the Binomial Distribution	

Contents	xvii
ontents	AVII

22	Theo	ory of Errors	545
	22.1	Purpose of the Theory of Errors	549
	22.2	Mean Value and Variance	550
		22.2.1 Mean Value	550
		22.2.2 Variance and Standard Deviation	551
		22.2.3 Mean Value and Variance in a Random Sample	
		and Parent Population	552
	22.3		
	22.4	Error in Mean Value	556
	22.5	Normal Distribution: Distribution of Random Errors	557
	22.6	Law of Error Propagation	558
	22.7	Weighted Average	560
	22.8	Curve Fitting: Method of Least Squares, Regression Line	561
	22.9	Correlation and Correlation Coefficient	564
Ans	swers .		569
Ind	ex		595