Contents

1	Intro	oduction .		1		
	1.1	Problen	n Definition	1		
		1.1.1	Modeling Technical Systems	3		
		1.1.2	Definition of a System	5		
		1.1.3	Simulation and Simulation Environment	5		
		1.1.4	Vehicle Models	6		
	1.2	Comple	ete Vehicle Model	9		
		1.2.1	Vehicle Models and Application Areas	11		
		1.2.2	Commercial Vehicle Simulation Systems	11		
	1.3	Outline of the Book				
	1.4	Webpag	ge of the Book	14		
	Refe	rences		14		
2		damental	s of Mathematics and Kinematics	17		
	2.1	Vectors	S	17		
		2.1.1	Elementary Algorithms for Vectors	17		
		2.1.2	Physical Vectors	18		
	· · · · · · · · · · · · · · · · · · ·		nate Systems and Components	19		
		2.2.1	Coordinate Systems	19		
		2.2.2	Component Decomposition	19		
		2.2.3	Relationship Between Component			
			Representations	20		
		2.2.4	Properties of the Transformation Matrix	22 22		
	2.3	Linear Vector Functions and Second Order Tensors				
	2.4	Free Motion of Rigid Bodies				
		2.4.1	General Motion of Rigid Bodies	24		
		2.4.2	Relative Motion	28		
		2.4.3	Important Reference Frames	30		
	2.5		onal Motion	31		
		2.5.1	Spatial Rotation and Angular Velocity			
			in General Form	32		
		2.5.2	Parameterizing of Rotational Motion	32		
		2.5.3	The Rotational Displacement Pair and Tensor			
			of Rotation	34		

viii Contents

		2.5.4	Rotational Displacement Pair and Angular	26		
		0.5.5	Velocity	36		
	. .	2.5.5	CARDAN (BRYANT) Angles	36		
	Kefe	rences .		40		
3			f Multibody Systems	43		
	3.1		re of Kinematic Chains	43		
		3.1.1	Topological Modelling	43		
		3.1.2	Kinematic Modelling	45		
	3.2		in Kinematic Chains	46		
		3.2.1	Joints in Spatial Kinematic Chains	46		
		3.2.2	Joints in Planar Kinematic Chains	47		
		3.2.3	Joints in Spherical Kinematic Chains	48		
		3.2.4	Classification of Joints	50		
	3.3	_	s of Freedom and Generalized Coordinates	50		
		3.3.1	Degrees of Freedom of Kinematic Chains	50		
		3.3.2	Examples from Road Vehicle			
			Suspension Kinematics	53		
		3.3.3	Generalized Coordinates	53		
	3.4	Basic I	Principles of the Assembly of Kinematic Chains	55		
		3.4.1	Sparse-Methods: Absolute Coordinates			
			Formulation	55		
		3.4.2	Vector Loop Methods			
			("LAGRANGE" Formulation)	58		
		3.4.3	Topological Methods: Formulation			
			of Minimum Coordinates	59		
	3.5	Kinem	atics of a Complete Multibody System	62		
		3.5.1	Basic Concept	62		
		3.5.2	Block Wiring Diagram and Kinematic Networks	63		
		3.5.3	Relative Kinematics of the Spatial			
			Four-Link Mechanism	64		
		3.5.4	Relative, Absolute and Global Kinematics	66		
		3.5.5	Example: Double Wishbone Suspension	68		
	Refe	rences .		71		
4	Equ	ations of	Motion of Complex Multibody Systems	73		
	4.1	Fundar	mental Equation of Dynamics for Point			
			Systems	73		
	4.2	JOURDAIN'S Principle				
	4.3		ANGE Equations of the First Kind			
			int Mass Systems	75		
	4.4		ANGE Equations of the Second Kind			
			gid Bodies	76		
	4.5		EMBERT's Principle	78		

Contents ix

	4.6	Comput	ter-Based Derivation of the Equations of Motion	80		
		4.6.1	Kinematic Differentials of Absolute Kinematics	80		
		4.6.2	Equations of Motion	83		
		4.6.3	Dynamics of a Spatial Multibody Loop	84		
	Refe	rences		92		
5	Kine	matics a	nd Dynamics of the Vehicle Body	93		
	5.1		-Fixed Reference Frame	93		
	5.2	Kinema	atical Analysis of the Chassis	96		
		5.2.1	Incorporation of the Wheel Suspension			
			Kinematics	96		
		5.2.2	Equations of Motion	99		
	Refe	rences		100		
6	Mod	eling and	Analysis of Wheel Suspensions	101		
	6.1		on of Wheel Suspension Systems	101		
	6.2		nt Types of Wheel Suspension	103		
		6.2.1	Beam Axles	104		
		6.2.2	Twist-Beam Suspension	105		
		6.2.3	Trailing-Arm Axle	106		
		6.2.4	Trailer Arm Axle	108		
		6.2.5	Double Wishbone Axles	108		
		6.2.6	Wheel Suspension Derived from the MacPherson			
			Principle	110		
		6.2.7	Multi-Link Axles	111		
	6.3		teristic Variables of Wheel Suspensions	113		
	6.4	One Dimensional Quarter Vehicle Models				
	6.5	Three-Dimensional Model of a MacPherson				
			Suspension	119		
		6.5.1	Kinematic Analysis	120		
		6.5.2	Explicit Solution	124		
	6.6	6.6 Three-Dimensional Model of a Five-Link Rear				
			Suspension	129		
		6.6.1	Kinematic Analysis	129		
		6.6.2	Implicit Solution	132		
		6.6.3	Simulation Results of the Three Dimensional			
			Quarter Vehicle Model	137		
	Refe	References				
7	Mod	leling of	the Road-Tire-Contact	143		
	7.1	Tire Co	onstruction	144		
	72	Forces	Retween Wheel and Road	145		

x Contents

	7.3	Stationary Tire Contact Forces					
		7.3.1	Tires Under Vertical Loads	146			
		7.3.2	Rolling Resistance	148			
		7.3.3	Tires Under Longitudinal (Circumferential)				
			Forces	148			
		7.3.4	Tires Subjected to Lateral Forces	159			
		7.3.5	Influence of the Camber on the Tire				
			Lateral Force	162			
		7.3.6	Influence of the Tire Load and the Tire Forces				
			on the Patch Surface	164			
		7.3.7	Fundamental Structure of the Tire Forces	164			
		7.3.8	Superposition of Circumferential				
			and Lateral Forces	165			
	7.4	Tire Me	odels	167			
		7.4.1	The Contact Point Geometry	169			
		7.4.2	Contact Velocity	173			
		7.4.3	Calculation of the Slip Variables	175			
		7.4.4	Magic Formula Model	175			
		7.4.5	Magic Formula Models for Superimposed Slip	178			
		7.4.6	HSRI Tire Model	179			
	7.5		onary Tire Behavior	181			
				183			
	11010	ichicos .		102			
8	Mod	eling of t	the Drivetrain	185			
•	8.1						
	8.2	• • • • • • • • • • • • • • • • • • •					
	0.2	8.2.1	Relative Motion of the Engine Block	185 186			
		8.2.2	Modelling of the Drivetrain	188			
		8.2.3	Engine Bracket	189			
		8.2.4	Modeling of Homokinetic Joints	193			
	8.3		ing of the Engine	196			
	8.4	Relative Kinematics of the Drivetrain					
	8.5	Absolute Kinematics of the Drivetrain					
	8.6	Equations of Motion					
	8.7	Discussion of Simulation Results					
	• • • • • • • • • • • • • • • • • • • •	ferences					
	Reie	ichecs .		20.			
9	Forc	e Compe	onents	205			
	9.1		and Torques in Multibody Systems	20:			
	7.1	9.1.1	Reaction Forces	203			
		9.1.2	Applied Forces	208			
	9.2	,	ing Brake System	208			
	9.2	-	unamic Forces	210			

Contents xi

	9.4	Spring a	and Damper Components	212
		9.4.1	Spring Elements	212
		9.4.2	Damper Elements	213
		9.4.3	Force Elements Connected in Parallel	214
		9.4.4	Force Elements in Series	214
	9.5	Anti-Ro	ll Bars	216
		9.5.1	Passive Anti-Roll Bars	216
		9.5.2	Active Anti-Roll Bars	219
	9.6	Rubber	Composite Elements	219
	Refer	ences		221
10	Singl	e Track l	Models	223
-0	10.1		Single Track Model	223
	10.1	10.1.1	Equations of Motion of the Linear	
		10.1.1	Single Track Model	224
		10.1.2	Stationary Steering Behavior and Cornering	229
		10.1.2	Instationary Steering Behavior: Vehicle Stability	232
	10.2		ar Single Track Model	234
	10.2	10.2.1	Kinetics of the Nonlinear Single Track Model	234
		10.2.1	Tire Forces	237
		10.2.2	Drive and Brake Torques	240
		10.2.4	Equations of Motion	241
		10.2.5	Equations of State	243
	10.3		Roll Model	244
	10.5	10.3.1	Equation of Motion for the Rolling	2-1-
		10.5.1	of the Chassis	245
		10.3.2	Dynamic Tire Loads	249
		10.3.2	Influence of the Self-steering Behavior	251
	Dofor		influence of the Sen-steering Behavior	253
	Kelei	iences		25.
11	Twin	Track N	Models	255
	11.1	Twin T	rack Model Without Suspension Kinematics	255
		11.1.1	NEWTON's and EULER's Equations for a Basic	
			Spatial Twin Track Model	258
		11.1.2	Spring and Damper Forces	260
		11.1.3	NEWTON's and EULER's Equations	
			of the Wheels	262
		11.1.4	Tire-Road Contact	263
		11.1.5	Drivetrain	26:
		11.1.6	Brake System	26
		11.1.7	Equations of Motion	26
	11.2	Twin T	rack Models with Kinematic Wheel Suspensions	269
		11.2.1	Degrees of Freedom of the Twin Track Model	269
		1122	Kinematics of the Vehicle Chassis	27

xii Contents

		11.2.3	Generalized Kinematics of the Wheel Suspension	274
		11.2.4	Wheel Suspension with a Trailing Arm	278
		11.2.5	Kinematics of the Wheels While Using a Semi	
			Trailing Arm Suspension	283
		11.2.6	Tire Forces and Torques	286
		11.2.7	Suspension Springs and Dampers	287
		11.2.8	Aerodynamic Forces	288
		11.2.9	Steering	288
		11.2.10	Anti-roll Bar	289
		11.2.11	Applied Forces and Torques	290
		11.2.12	NEWTON's and EULER's Equations	291
		11.2.13	Motion and State Space Equations	294
	11.3	Simplific	ed Driver Model	294
		11.3.1	Controller Concept	295
	11.4	Paramete	erization	298
	Refer	ences		298
12	Thre		ional Complete Vehicle Models	299
	12.1		g of the Complete Vehicle	299
		12.1.1	Kinematics of a Rear-Wheel Driven Complete	
			Vehicle Model	300
		12.1.2	Kinematics of Front- and Four-Wheel Driven	
			Complete Vehicle Models	309
		12.1.3	Dynamics of the Complete Vehicle Model	321
	12.2		on of Motor Vehicles	324
		12.2.1	Setup and Concept of FASIM_C++	325
		12.2.2	Modular Structure of a Vehicle Model	327
		12.2.3	Construction of the Equations of Motion	333
		12.2.4	Numeric Integration	337
		12.2.5	Treatment of Events	340
	Refer	ences		341
13	Mode	el of a Tv	pical Complex Complete Vehicle	343
	13.1		g of the Complete Vehicle	343
	13.2	Model \	Verification and Validation	346
		13.2.1	Verification	346
		13.2.2	Validation	347
	13.3		erized Vehicle Model	354
		13.3.1	Definition of a Reference Model	355
		13.3.2	Comparison of Parameterized Versus	
			Validated Models	359
	Dofor	onace		260

Contents xiii

14	Selected Applications			363
	14.1		on of a Step Steering Input (ISO 1989)	363
	14.2		on of Vehicle Rollover	365
		14.2.1	Virtual Proving Grounds	369
		14.2.2	Results of the Simulation	373
	14.3	Control	of the Roll Dynamics Using Active Anti-Roll Bars	384
		14.3.1	Passive Anti-Roll Bar	384
		14.3.2	Stiffness Distribution Between	
			Front- and Rear Axle	385
		14.3.3	Adjustment of the Roll Dynamics by Means	
			of Active Anti-Roll Bars	388
		14.3.4	Control Unit Design	388
		14.3.5	Response and Disturbance Reaction	39
		14.3.6	Roll Torque Distribution with Fuzzy Logic	39
		14.3.7	Active Principle	392
		14.3.8	Potential of a Roll Torque Distribution	394
	Refer	ences	•	39:
Ind	lex			39