

Contents

List of Contributors XV

1	Fundamentals of Vacuum Technology 1
	<i>Wolfgang Jorisch</i>
1.1	Introduction 1
1.2	Fundamentals of Vacuum Technology 2
1.2.1	Fundamentals of Gas Kinetics 3
1.2.1.1	Mean Free Path 5
1.2.2	Equation of State for Ideal Gases 6
1.2.3	Flow of Gases through Pipes in a Vacuum 7
1.2.3.1	Gas Throughput and Conductance 8
1.2.3.2	Flow through Long, Round Pipes 10
1.2.4	Vacuum Pumps Overview 12
	References 14
2	Condensation under Vacuum 15
	<i>Harald Grave</i>
2.1	What Is Condensation? 15
2.2	Condensation under Vacuum without Inert 16
2.3	Condensation with Inert Gases 17
2.4	Saturated Inert Gas–Vapour Mixtures 19
2.5	Vapour–Liquid Equilibrium 20
2.6	Types of Condensers 21
2.7	Heat Transfer and Condensation Temperature in a Surface Condenser 24
2.8	Vacuum Control in Condensers 30
2.9	Installation of Condensers 30
2.10	Special Condenser Types 32
	Further Reading 34
3	Liquid Ring Vacuum Pumps in Industrial Process Applications 35
	<i>Pierre Hähre</i>
3.1	Design and Functional Principle of Liquid Ring Vacuum Pumps 35

3.1.1	Functional Principle	35
3.1.2	Design Details	37
3.1.2.1	The Medium Conveyance	37
3.1.2.2	Design of the Pressure Ports	37
3.1.2.3	Situation of the Working Openings	39
3.2	Operating Behaviour and Design of Liquid Ring Vacuum Pumps	40
3.2.1	Hydraulics	40
3.2.1.1	Power Consumption	40
3.2.1.2	Suction Volume	41
3.2.2	Thermodynamics	41
3.2.2.1	Condensable Components in the Medium to Be Pumped	42
3.2.2.2	Temperature of the Medium to Be Pumped	42
3.2.2.3	Operating Liquid	43
3.2.2.4	Catalogue Values	44
3.2.3	Counterpressure, Air Pressure	45
3.2.4	Design Data	47
3.3	Vibration and Noise Emission with Liquid Ring Vacuum Pumps	48
3.3.1	Vibration Stimulation by Imbalance of Rotary Solids	48
3.3.2	Vibration Stimulation by Pulsation	49
3.3.3	Vibration Stimulation by Flow Separations	50
3.3.4	Measures for Vibration Damping	50
3.3.4.1	Factory Measures	50
3.3.4.2	Installation	50
3.3.4.3	Operating Mode	51
3.4	Selection of Suitable Liquid Ring Vacuum Pumps	51
3.4.1	Simple, Robust and Suitable for the Entire Pressure Range	52
3.4.2	The Vacuum Pump for the Delivery of Liquid	52
3.4.3	Quiet and Compact for a Vacuum Close to the Vapour Pressure	57
3.4.4	A Compact Unit	59
3.4.5	The Right Sealing Concept	59
3.4.5.1	Single-Acting Mechanical Seal	59
3.4.5.2	Double-Acting Mechanical Seal	61
3.4.5.3	Magnetic Coupling	62
3.4.6	Vacuum Control	63
3.4.7	Valve Control	63
3.4.7.1	Bypass Recovery	63
3.4.7.2	Reduction on the Suction Side	64
3.4.8	Power Adjustment	64
3.4.8.1	Cascade Connection of Vacuum Pumps	65
3.4.8.2	Speed Adjustment in Vacuum Pumps	65
3.4.8.3	Cascade Connection Combined with Speed Adjustment	66
3.5	Process Connection and Plant Construction	67
3.5.1	Set-Up and Operation of Liquid Ring Vacuum Pumps	67
3.5.2	Conveyance of the Operating Liquid	68
3.5.3	Precompression	69

3.5.3.1	Precompression by Gas Ejector	69
3.5.3.2	Precompression by Steam Jet	71
3.5.3.3	Precompression by Rotary Piston Vacuum Pumps	72
3.6	Main Damage Symptoms	73
3.6.1	Water Impact	73
3.6.2	Cavitation	73
3.6.2.1	Concept	73
3.6.3	Calcareous Deposits and How to Avoid Them	75
3.6.3.1	Water as Service Liquid in Liquid Ring Vacuum Pumps (LRVPs)	75
3.6.3.2	Prevention by Monitoring the Water Quality	76
3.7	Table of Symbols	78
4	Steam Jet Vacuum Pumps	81
	<i>Harald Gräve</i>	
4.1	Design and Function of a Jet Pump	81
4.2	Operating Behaviour and Characteristic	84
4.3	Control of Jet Compressors	87
4.4	Multi-Stage Steam Jet Vacuum Pumps	90
4.5	Comparison of Steam, Air and Other Motive Media	93
	Further Reading	95
5	Mechanical Vacuum Pumps	97
	<i>Wolfgang Jorisch</i>	
5.1	Introduction	97
5.2	The Different Types of Mechanical Vacuum Pumps	99
5.2.1	Reciprocating Piston Vacuum Pump	100
5.2.2	Diaphragm Vacuum Pump	100
5.2.3	Rotary Vane Vacuum Pump	101
5.2.4	Rotary Plunger Vacuum Pump	102
5.2.5	Roots Vacuum Pump	103
5.2.6	Dry Compressing Vacuum Pump	104
5.3	When Using Various Vacuum Pump Designs in the Chemical or Pharmaceutical Process Industry, the Following Must Be Observed	104
5.3.1	Circulatory-Lubricated Rotary Vane and Rotary Plunger Vacuum Pumps	104
5.3.2	Fresh-Oil-Lubricated Rotary Vane Vacuum Pumps	108
5.3.3	Dry, Respectively Oil-Free Compressing Vacuum Pumps	110
5.3.4	Roots Vacuum Pumps	111
5.3.4.1	Operating Principle of Roots Vacuum Pumps	111
5.3.4.2	Roots Vacuum Pumps with Bypass Valve, Respectively with Frequency Controlled Motor	112
5.3.4.3	Compression of Roots Vacuum Pumps	113
5.3.4.4	Dimensioning Combinations of Roots Vacuum Pumps with Backing Pumps	115

5.3.4.5	Power Requirement of a Roots Vacuum Pump	117
5.3.4.6	Roots Vacuum Pumps with Pre-Admission Cooling Facility	117
5.3.5	Dry Compressing Vacuum Pumps for Chemistry Applications	118
5.3.5.1	Dry Compressing, Three-Stage Roots Vacuum Pump with Exhaust, Respectively Non-Return Valves between the Stages	118
5.3.5.2	Claw Vacuum Pumps (Northeby Principle)	119
5.3.5.3	New Developments of Screw Vacuum Pumps for the Area of Process Chemistry	124
5.3.5.4	Outlook as to the Future of the Mechanical Vacuum Pumps in the Area of Chemical Process Engineering	128
	References	128
6	Basics of the Explosion Protection and Safety-Technical Requirements on Vacuum Pumps for Manufacturers and Operating Companies	129
	<i>Hartmut Härtel</i>	
6.1	Introduction	129
6.2	Explosion Protection	130
6.2.1	General Basics	130
6.2.2	Explosive Atmosphere and Safety Characteristics	131
6.2.2.1	General	131
6.2.2.2	Explosion Range and Explosion Limits	133
6.2.2.3	Flash Point	137
6.2.2.4	Minimum Ignition Energy and Ignition Temperature	138
6.2.2.5	Flame-Proof Gap Width	141
6.2.3	Measures of the Explosion Protection	144
6.3	Directive 99/92/EC	146
6.3.1	Requirements on Operating Companies of Vacuum Pumps	146
6.3.2	Classification of Hazardous Areas into Zones	149
6.4	Directive 94/9/EC	150
6.4.1	Equipment Groups and Categories	150
6.4.1.1	Equipment Group II	151
6.4.2	Assignment between Equipment Categories and Zones	152
6.4.3	Requirements on Manufacturers of Vacuum Pumps	153
6.4.4	Conformity Assessment Procedure	154
6.4.5	Application of the Regulations of the Directive	155
6.5	Summary	157
	References	158
	Further Reading	159
7	Measurement Methods for Gross and Fine Vacuum	161
	<i>Werner Große Bley</i>	
7.1	Pressure Units and Vacuum Ranges	161
7.2	Directly and Indirectly Measuring Vacuum Gauges and Their Measurement Ranges	162
7.3	Hydrostatic Manometers	163

7.4	Mechanical and Electromechanical Vacuum Gauges	164
7.4.1	Sensors with Strain Gauges	165
7.4.2	Thermal Conductivity Gauges	167
7.4.3	Thermal Conductivity Gauges with Constant Filament Heating Power	169
7.4.4	Thermal Conductivity Gauges with Constant Filament Temperature	170
7.4.5	Environmental and Process Impacts on Thermal Conductivity Gauges	170
	References	172
	Further Reading	172
8	Leak Detection Methods	173
	<i>Werner Große Bley</i>	
8.1	Definition of Leakage Rates	173
8.2	Acceptable Leakage Rate of Chemical Plants	174
8.3	Methods of Leak Detection	175
8.4	Helium as a Tracer Gas	176
8.5	Leak Detection with Helium Leak Detector	176
8.6	Leak Detection of Systems in the Medium-Vacuum Range	177
8.6.1	Connection of Leak Detector to the Vacuum System of a Plant	177
8.6.2	Detection Limit for Leakage Rates at Different Connection Positions of a Multistage Pumping System	179
8.7	Leak Detection on Systems in the Rough Vacuum Range	180
8.7.1	Connection of Leak Detector Directly to the Process Vacuum	180
8.7.2	Connection of Leak Detector at the Exhaust of the Vacuum System	180
8.8	Leak Detection and Signal Response Time	181
8.9	Properties and Specifications of Helium Leak Detectors	182
8.10	Helium Leak Detection in Industrial Rough Vacuum Applications without Need of a Mass Spectrometer	183
8.10.1	Principle of the Wise Technology® Sensor	185
8.10.2	Application	186
	References	187
	Further Reading	187
	European Standards	187
9	Vacuum Crystallisation	189
	<i>Guenter Hofmann</i>	
9.1	Introduction	189
9.2	Crystallisation Theory for Practice	189
9.3	Types of Crystallisers	195
9.4	Periphery	203
9.5	Process Particularities	205
9.5.1	Surface-Cooling Crystallisation	206

9.5.2	Vacuum-Cooling Crystallisation	207
9.5.3	Evaporation Crystallisation	207
9.6	Example – Crystallisation of Sodium Chloride	207
	References	209
10	Why Evaporation under Vacuum?	211
	<i>Gregor Klinke</i>	
	Summary	211
10.1	Introduction	211
10.2	Thermodynamics of Evaporation	211
10.3	Pressure/Vacuum Evaporation Comparison	213
10.3.1	Vapour Utilisation	214
10.3.2	Design of the Apparatuses	214
10.3.3	Machine Equipment	214
10.3.4	Corrosion	215
10.3.5	Insulation	215
10.3.6	Safety Aspects	215
10.3.7	Product Properties	215
10.3.8	Boiling Range	216
10.4	Possibility of Vapour Utilization	217
10.4.1	External Utilization	217
10.4.2	Multi-Stage Evaporation	217
10.4.3	Mechanical Vapour Recompression	217
	Further Reading	220
11	Evaporators for Coarse Vacuum	221
	<i>Gregor Klinke</i>	
	Summary	221
11.1	Introduction	221
11.2	Criteria for the Selection of an Evaporator	221
11.2.1	Suitability for the Product	221
11.2.2	Cleaning	222
11.2.3	Quality of Heat Transfer	222
11.2.4	Required Space	222
11.2.5	Cost Efficiency	223
11.3	Evaporator Types	223
11.3.1	Agitator Evaporator	223
11.3.2	Natural Circulation Evaporator	223
11.3.3	Climbing-Film Evaporator	225
11.3.4	Falling-Film Evaporator	226
11.3.5	Forced-Circulation Evaporator	228
11.3.6	Fluidised-Bed Evaporator	230
11.3.7	Plate Evaporator	231
	Further Reading	233

12	Basics of Drying Technology	235
	<i>Jürgen Oess</i>	
12.1	Basics of Solids–Liquid Separation Technology	235
12.2	Basics of Drying Technology	235
12.2.1	Convection Drying	236
12.2.2	Radiation Drying	237
12.2.3	Contact Drying	237
12.2.3.1	Heat Transfer during Contact Drying	237
12.2.3.2	Product Temperature and Vapour Removal	239
12.2.3.3	Drying under Vacuum	241
12.2.4	Advantages of the Vacuum Drying	242
12.2.4.1	Increase of the Drying Capacity	242
12.2.4.2	Gentle Thermal Product Treatment	242
12.2.4.3	Separation of High Boiling Solvents	243
12.2.4.4	High Thermal Efficiency	243
12.2.4.5	Processing of Toxic or Explosive Materials	243
12.3	Discontinuous Vacuum Drying	244
12.3.1	Setup of a Batch Vacuum Drying System	244
12.3.2	Operation of Discontinuous Vacuum Dryers	244
12.4	Continuous Vacuum Drying	246
12.4.1	Setup of a Batch Vacuum Drying System	246
12.4.2	Operation of Continuous Vacuum Dryers	246
12.4.3	Inlet- and Outlet Systems	247
12.5	Dryer Designs	248
	Reference	249
13	Vacuum Technology Bed	251
	<i>Michael Jacob</i>	
13.1	Introduction to Fluidized Bed Technology	251
13.1.1	Open or Once-through Fluidized Bed Plants	251
13.1.2	Normal Pressure Fluidized Bed Units with Closed-Loop Systems	251
13.2	Vacuum Fluidized Bed Technology	253
13.2.1	Layout	253
13.2.2	Sequence of Operation	255
13.2.3	Fluidization at Vacuum Conditions	255
13.2.4	Heat Energy Transfer under Vacuum Conditions	256
13.2.5	Applications	257
	References	258
14	Pharmaceutical Freeze-Drying Systems	259
	<i>Manfred Heldner</i>	
14.1	General Information	259
14.2	Phases of a Freeze-Drying Process	260
14.2.1	Freezing	260

14.2.2	Primary Drying – Sublimation	261
14.2.3	Secondary Drying	264
14.2.4	Final Treatment	264
14.2.5	Process Control	265
14.3	Production Freeze-Drying Systems	266
14.3.1	Drying Chamber and Shelf Assembly	267
14.3.2	Ice Condenser	270
14.3.3	Refrigerating System	271
14.3.4	Vacuum System	273
14.3.5	Cleaning of the Freeze-Drying System	274
14.3.6	Sterilisation	276
14.3.7	VHP Sterilisation	277
14.4	Final Comments	278
	Further Reading	279
15	Short Path and Molecular Distillation	281
	<i>Daniel Bethge</i>	
15.1	Introduction	281
15.2	Some History	281
15.2.1	Vacuum Distillation	282
15.2.2	Short Path Evaporator	285
15.2.3	The Vacuum System	286
15.2.4	Distillation Plant	288
15.2.5	Application Examples	289
15.2.6	New Developments	292
15.3	Outlook	293
	References	293
16	Rectification under Vacuum	295
	<i>Thorsten Hugen</i>	
16.1	Fundamentals of Distillation and Rectification	295
16.2	Rectification under Vacuum Conditions	298
16.3	Vacuum Rectification Design	302
16.3.1	Liquid and Gas Load	303
16.3.2	Pressure Drop	303
16.3.3	Separation Efficiency	303
16.4	Structured Packings for Vacuum Rectification	305
	Nomenclature, Applied Units	309
	Greek Symbols	310
	Subscripts and Superscripts	310
	References	310
17	Vacuum Conveying of Powders and Bulk Materials	311
	<i>Thomas Ramme</i>	
17.1	Introduction	311

17.2	Basic Theory	312
17.2.1	General	312
17.2.2	Typical Conditions in a Vacuum Conveying Line	315
17.2.2.1	Dilute Phase Conveying	316
17.2.2.2	Dense Phase Conveying	316
17.2.2.3	Plug Flow Conveying	317
17.3	Principle Function and Design of a Vacuum Conveying System	318
17.3.1	Multiple-Stage, Compressed-Air Driven Vacuum Generators	319
17.3.2	Conveying and Receiver Vessels	322
17.3.3	Filter Systems	324
17.4	Continuous Vacuum Conveying	325
17.5	Reactor- and Stirring Vessel Loading in the Chemical Industry	325
17.6	Conveying, Weighing, Dosing and Big-Bag Filling and Discharging	330
17.7	Application Parameters	330
	References	330
18	Vacuum Filtration – System and Equipment Technology, Range and Examples of Applications, Designs	331
	<i>Franz Tomasko</i>	
18.1	Vacuum Filtration, a Mechanical Separation Process	331
18.1.1	On the Theory of Filtration and Significance of the Laboratory Experiment	332
18.1.2	Guide to Filter-Type Selection	333
18.2	Design of an Industrial Vacuum Filter Station	335
18.3	Methods of Continuous Vacuum Filtration, Types of Design and Examples of Application	337
18.3.1	Vacuum Filtration on a Curved Convex Surface, the Drum Filter	337
18.3.1.1	Design of a Vacuum Drum Filter	337
18.3.1.2	Working Method of a Continuous Operating Vacuum Drum Filter	345
18.3.1.3	Different Constructions	346
18.3.1.4	Special Vacuum Drum Filters	346
18.3.1.5	Calculation Example	348
18.3.2	Vacuum Filtration on a Curved Concave Surface, the Internal Filter	351
18.3.3	Vacuum Filtration on a Flat Horizontal Surface	352
18.3.3.1	The Belt Filter	352
18.3.3.2	The Pan Filter	353
18.3.4	Vacuum Filtration on a Vertical Flat Surface, the Disc Filter	358
	References	361
	Index	363