Contents

Preface				
Abbreviations			xiii	
1	Intr	troduction		
	1.1	Introduction		1
		1.1.1	Why Photovoltaics?	1
		1.1.2	Who Should Read this Book?	2 2
		1.1.3	Structure of the Book	2
	1.2	What	is Energy?	3
		1.2.1	Definition of Energy	3
		1.2.2	Units of Energy	4
		1.2.3	Primary, Secondary and End Energy	5
		1.2.4	Energy Content of Various Substances	6
	1.3	Proble	ems with Today's Energy Supply	7
		1.3.1	Growing Energy Requirements	7
		1.3.2	Tightening of Resources	8
		1.3.3	Climate Change	9
			Hazards and Disposal	10
	1.4	Renev	wable Energies	11
		1.4.1	The Family of Renewable Energies	11
		1.4.2	Advantages and Disadvantages of Renewable Energies	12
	1.5		voltaic - The Most Important in Brief	12
			What Does "Photovoltaic" Mean?	13
			What are Solar Cells and Solar Modules?	13
			How is a Typical Photovoltaic Plant Structured?	14
		1.5.4	What Does a Photovoltaic Plant "Bring?"	14
	1.6		ry of Photovoltaics	15
		1.6.1	How it all Began	15
		1.6.2	The First Real Solar Cells	16
		1.6.3	From Space to Earth	. 18
		1.6.4	From Toy to Energy Source	18

vi Contents

2	Solar	r Radia	tion	21
	2.1	Properties of Solar Radiation		
		2.1.1	Solar Constant	21
		2.1.2	Spectrum of the Sun	22
		2.1.3	Air Mass	23
	2.2	Global	Radiation	24
		2.2.1	Origin of Global Radiation	24
		2.2.2	Contributions of Diffuse and Direct Radiation	25
		2.2.3	Global Radiation Maps	25
	2.3	Calcul	ation of the Position of the Sun	29
		2.3.1	Declination of the Sun	29
		2.3.2	Calculating the Path of the Sun	31
	2.4	Radiat	ion on Tilted Surfaces	33
		2.4.1	Radiation Calculation with the Three-Component Model	33
		2.4.2	Radiation Estimates with Diagrams and Tables	37
		2.4.3	Yield Gain through Tracking	38
	2.5	Radiat	ion Availability and World Energy Consumption	40
		2.5.1	The Solar Radiation Energy Cube	40
		2.5.2	The Sahara Miracle	41
3	Func		als of Semiconductor Physics	43
	3.1		ure of Semiconductors	43
			Bohr's Atomic Model	43
			Periodic Table of the Elements	45
			Structure of the Silicon Crystal	46
		3.1.4	Compound Semiconductors	47 47
	3.2	Band Model of the Semiconductor		
		<i>3.2.1</i>	0 0	47
		3.2.2	Differences in Isolators, Semiconductors and Conductors	48
			Intrinsic Carrier Concentration	49
	3.3	_	e Transport in Semiconductors	50
			Field Currents	50
			Diffusion Currents	52
	3.4	_	g of Semiconductors	53
		3.4.1	n-Doping	53
		3.4.2	p-Doping	54
	3.5	-	-n Junction	54
			Principle of Method of Operation	55
		3.5.2	Band Diagram of the p-n Junction	56
		3.5.3	Behavior with Applied Voltage	58
		3.5.4	Diode Characteristics	59 60
	3.6	•		
		3.6.1	Phenomenon of Light Absorption	60
		3.6.2	Light Reflection on Surfaces	64

4			nd Method of Operation of Solar Cells	67
	4.1		deration of the Photodiode	67
			Structure and Characteristics	67
			Equivalent Circuit	69
	4.2		od of Function of the Solar Cell	69
			Principle of the Structure	69
			Recombination and Diffusion Length	70
			What Happens in the Individual Cell Regions?	71
			Back-Surface Field	73
	4.3		current	73
			Absorption Efficiency	74
		4.3.2	Quantum Efficiency	. 75
			Spectral Sensitivity	76
	4.4		cteristic Curve and Characteristic Dimensions	. 77
			Short Circuit Current I _{SC}	78
			Open Circuit Voltage V _{OC}	78
			Maximum Power Point (MPP)	79
			Fill Factor FF	79
		4.4.5	Efficiency η	80
			Temperature Dependency of Solar Cells	80
	4.5		ical Description of Real Solar Cells	82
			Simplified Model	82
			Standard Model (Single-Diode Model)	83
			Two-Diode Model	83
			Determining the Parameters of the Equivalent Circuit	85
	4.6		dering Efficiency	87
			Spectral Efficiency	87
			Theoretical Efficiency	90
			Losses in Real Solar Cells	92
	4.7		Efficiency Cells	95
			Buried-Contact Cells	96
			Point-Contact Cell	96
		4.7.3	PERL Cell	97
5	Cell	Cell Technologies		
	5.1	Produ	ction of Crystalline Silicon Cells	99
		<i>5.1.1</i>	From Sand to Silicon	99
		5.1.2	From Silicon to Wafer	103
		5.1.3	Production of Standard Solar Cells	104
		5.1.4	Production of Solar Modules	106
	5.2		of Amorphous Silicon	108
		5.2.1	Properties of Amorphous Silicon	108
		5.2.2	Production Process	108
		5.2.3	Structure of the pin Cell	109
		5.2.4	Staebler–Wronski Effect	110
		5.2.5	Stacked Cells	112

		5.2.6	Combined Cells of Micromorphous Material	113		
			Integrated Series Connection	114		
	5.3		Thin Film Cells	115		
		5.3.1	Cells of Cadmium-Telluride	115		
			CIS Cells	116		
	5.4	Hybrid	Wafer Cells	118		
		<i>5.4.1</i>	Combination of c-Si and a-Si (HIT Cell)	118		
		5.4.2	Stacked Cells of III/V Semiconductors	119		
	5.5	Other (Cell Concepts	120		
	5.6	Concer	ntrator Systems	120		
		5.6.1	Principle of Radiation Bundling	120		
		5.6.2	What is the Advantage of Concentration?	120		
		5.6.3	Examples of Concentrator Systems	122		
		5.6.4	Advantages and Disadvantages of Concentrator Systems	123		
	5.7	Ecolog	ical Questions on Cell and Module Production	123		
		5.7.1	Environmental Effects of Production and Operation	123		
		5.7.2	Availability of Materials	124		
		<i>5.7.3</i>	Energy Amortization Time and Yield Factor	126		
		Summa	ary	129		
6	Sola	Solar Modules and Solar Generators				
_	6.1		ties of Solar Modules	133 133		
		6.1.1	Solar Cell Characteristic Curve in All Four Quadrants	133		
		6.1.2	Parallel Connection of Cells	134		
			Series Connection of Cells	135		
			Use of Bypass Diodes	136		
			Typical Characteristic Curves of Solar Modules	141		
		6.1.6	Special Case Thin Film Modules	143		
		6.1.7	Examples of Data Sheet Information	145		
	6.2		cting Solar Modules	145		
		6.2.1	Parallel Connection of Strings	145		
		6.2.2	What Happens in Case of Cabling Errors?	147		
			Losses Due to Mismatching	148		
		6.2.4	Smart Installation in Case of Shading	148		
	6.3	Direct	Current Components	150		
			Principle Plant Build-Up	150		
		6.3.2	Direct Current Cabling	151		
	6.4	Types	of Plants	153		
		6.4.1	Open Air Plants	153		
		6.4.2	Flat Roof Plants	155		
		6.4.3	Pitched Roof Systems	157		
		6.4.4	Façade Systems	. 159		
7	Phot	ovoltaic	System Technology	161		
•	7.1		Generator and Load	161		
		7.1.1	Resistive Load	161		

ix

		7.1.2	DC/DC Converter	162		
		7.1.3	MPP-Tracker	167		
	7.2	Grid-Co	onnected Systems	168		
		7.2.1	Feed-In Variations	169		
		7.2.2	Installation Concepts	169		
		7.2.3	Structure of Inverters	171		
		7.2.4	Efficiency of Inverters	177		
		7.2.5	Dimensioning of Inverters	181		
		7.2.6	Measures for Increasing Self-Consumption	184		
		7.2.7	Requirements of Grid Operators	186		
		7.2.8	Safety Aspects	· 188		
	7.3	Stand-A	Alone Systems	189		
		7.3.1	Principle of the Structure	189		
		<i>7.3.2</i>	Batteries	190		
		<i>7.3.3</i>	Charge Controllers	194		
		7.3.4	Examples of Stand-Alone Systems	197		
		7.3.5	Dimensioning Stand-Alone Plants	199		
}	Phot	Photovoltaic Metrology				
	8.1		ement of Solar Radiation	205		
		8.1.1	Global Radiation Sensors	205		
		8.1.2	Measuring Direct and Diffuse Radiation	207		
	8.2		ing the Power of Solar Modules	208		
			Buildup of a Solar Module Power Test Rig	209		
			Quality Classification of Module Flashers	210		
			Determination of the Module Parameters	21		
	8.3		ower Measurement at Site	212		
		8.3.1	Principle of Peak Power Measurement	212		
			Possibilities and Limits of the Measurement Principle	213		
	8.4		graphic Measuring Technology	214		
		8.4.1	Principle of Infrared Temperature Measurement	214		
			Bright Thermography of Solar Modules	215		
		8.4.3	Dark Thermography	217		
	8.5	Electrol	uminescence Measuring Technology	218		
		8.5.1	Principle of Measurement	218		
		8.5.2	Examples of Photos	219		
)	Desi	esign and Operation of Grid-Connected Plants				
	9.1	_	g and Dimensioning	223 223		
	•	9.1.1	Selection of Site	223		
		9.1.2	Shading	224		
			Plant Dimensioning and Simulation Programs	228		
	9.2		nics of Photovoltaic Plants	230		
	·-	9.2.1	The Renewable Energy Law	230		
		9.2.2	Return Calculation	23		
	9.3		ance. Monitoring and Visualization	235		

		9.3.1	Methods of Plant Surveillance	235
		9.3.2	Monitoring PV Plants	235
		9.3.3	Visualization	238
	9.4	Operati	ing Results of Actual Installations	239
		9.4.1	Pitched Roof Installation from 1996	239
		9.4.2	Pitched Roof Installation from 2002	240
		9.4.3	Flat Roof from 2008	241
10	Outl	ook		243
	10.1	Potenti	al of Photovoltaics	243
		10.1.1	Theoretical Potential	243
		10.1.2	Technically Useful Radiation Energy	243
		10.1.3	Technical Electrical Energy Generation Potential	245
		10.1.4	Photovoltaics versus Biomass	246
	10.2	Efficie	nt Promotion Instruments	247
	10.3	Price D	Development	248
	10.4	Though	hts on Future Energy Supply	249
		10.4.1	Current Development in Renewable Energies	249
		10.4.2	Consideration of Future Scenarios	249
		10.4.3	Options for Storing Electrical Energy	251
			Requirements of the Grids	254
	10.5	Conclu	sion	255
11	Exer	cises		257
Appendix A Appendix B			267	
			269	
References				271
Index				277