Contents

1	Introduction			1			
2	Fundamentals						
	2.1	Funda	mentals of Video Compression	5			
		2.1.1	Video Formats and Representation	5			
		2.1.2	Principles of Hybrid Video Coding	6			
		2.1.3	Error Resilience	9			
		2.1.4	Measurement of Video Quality	10			
	2.2	Funda	mentals of Video Streaming	1 2			
	2.3	Overv	iew of the H.264/AVC Scalable Video Coding	14			
		2.3.1	Network Abstraction Layer	15			
		2.3.2	Video Coding Layer	18			
		2.3.3	Hierarchical Temporal Prediction	20			
		2.3.4	Quantizer Cascading	21			
		2.3.5	Medium Grain Scalability	24			
		2.3.6	Unequal Importance of the NAL Units	25			
	2.4	Error	Concealment for SVC Bitstream	26			
		2.4 .1	Macroblock-level Error Concealment Algorithm	27			
		2.4.2	Frame-level Error Concealment Algorithm	28			
	2.5	Analy	sis of the Utility of the NAL Units	33			
		2.5.1	Determination of the Utility of Quality BL NAL Units on Base				
			Dependency Layer	37			
		2.5.2	Determination of the Utility of Quality EL NAL Units on Each				
			Dependency Layer	38			
		2.5.3	Determination of the Utility of Quality BL NAL Units on Enhance-				
			ment Dependency Layer	39			
	2.6	Summ	hary	40			
3	Rob	ust Vio	leo Streaming System in Wireless Networks	41			
	3.1		of the Art of Error Control Techniques	41			
		3.1.1	Proposed Streaming Framework Based on UEP	45			
		3.1.2	Priority Encoding Transmission	46			
	3.2	Reed-	Solomon Codes	49			
	3.3						
		3.3.1	Packet Erasure Channel	50			
		3.3.2	Gilbert-Elliot Model	51			
		3.3.3	Analysis of the Probability of Successful Decoding with RS Codes				
			over the Simplified Gilbert Model	53			

	3.4	Optim	ized Unequal Error Protection for SVC Stream	58					
		3.4.1	Optimization Problem	. 59					
		3.4.2	Solution Algorithms	. 62					
	3.5	Demo	nstrator of the Realtime Video Streaming System	. 78					
	3.6	Summ	ary	. 79					
4	Performance Analysis for Optimized Unicast Streaming								
•	4.1		ation Framework	80 . 80					
	4.2		equences						
	4.3	·- •1							
		4.3.1	Comparison of the Lagrangian Relaxation Based Algorithm with	. 82					
			the Dynamic Programming Based Algorithm	. 82					
		4.3.2	Comparison of SVC Streams to AVC Streams						
		4.3.3	Comparison of the Proposed UEP Framework with the Layer-based						
			UEP Framework	. 91					
		4.3.4	Comparison of Two-layer MGS Streams to Multiple-layer MGS Vec-						
			tor Streams in the Proposed UEP Framework	. 94					
		4.3.5	Comparison of the Performance of Different Error Concealment Al-						
			gorithms in the UEP Framework	. 99					
		4.3.6	Performance of the Proposed UEP Framework with Inaccurate Es-						
			timation of the Channel Conditions	. 101					
		4.3.7	Correction of the Inaccurate Estimation of Channel Conditions in						
			the Proposed UEP Framework	. 104					
		4.3.8	Performance of the Proposed UEP Framework with Estimated Util-						
			ities of the NAL Units						
	4.4	Summ	ary	. 115					
5	Performance Analysis for Optimized Multicast Streaming								
	5.1	Exten	sion of the UEP Framework in Multicast Scenario	. 119					
		5.1.1	Block Diagram of the Regulation Entity	. 119					
		5.1.2	Multicast PET Scheme	. 119					
		5.1.3	Optimization Problem	. 121					
	5.2 Experimental Results								
		5.2.1	Results of Multicast Streaming on One Channel with MGS Quality						
			Scalability	. 124					
		5.2.2	Results of Multicast Streaming on Multiple Channels with Spatial						
			Scalability						
	5.3	Summ	lary	. 137					
6	Sum	Summary and Conclusions							
	6.1	Summ	nary	. 139					
	6.2	Future	e Work	. 142					
A	Further Results for Unicast Streaming 1								
	A .1	LG A	lgorithm vs. DP Algorithm	. 144					
	A.2	Propo	sed UEP Algorithm vs. Layer-based UEP Algorithm	. 147					

Bil	Bibliography				
В		her Results for Multicast Streaming Results of Multicast Streaming on One Channel	169 169		
		••			
		Application of the Estimated Utilities			
	A.7	Compensated Optimal UEP for Inaccurate Channel Estimation	163		
	A.6	Influence of Inaccurate Estimation of Packet Loss Rate at the Receiver Side	: 161		
	A.5	Comparison of Different Error Concealment Algorithms	158		
		Two-layer MGS Streams vs. Multiple-layer MGS Vector Streams			
		SVC Streams to AVC Streams			