Contents

1	Design of experiments – systematic mania?	1
1.1	Design of experiments as part of the challenges and criteria	
	of success in modern R&D	
1.2	A typical experiment in coatings formulation	!
1.3	Factors, Levels, etc some vocabulary at the beginning	
1.4	Classical design of experiments and the limitations	2
1.4.1	Conventional methods - more diversity is not possible	2
1.4.2	Limits in case of the classical approach	2
1.4.2.1	Number of experiments in case of many factors	2
1.4.2.2	Non-linear effects and domain dependence	2
1.4.2.3	Universality of the statements	2
1.4.2.4	You desire, we play - multiple responses	2
1.4.2.5	The gain of knowledge and new information is too slow	:
1.5	Design of experiments - what's that?	2
1.5.1	Design, factors and effects	:

1.5.2	Interactions	30
1.6	Where is the statistics?	32
1.7	Models - pictures of reality	36
1.8	Overview, possibilities, benefits and limits	42
1.9	A brief history of statistical design of experiments	45
1.10	References	45
2	Planning is essential – a lot helps a lot	47
2.1	General principles for setting up a DoE investigation	47
2.1.1	Strategy of experimentation and guidelines for	
	pre-experimental planning	47
2.1.2	Overcome experimental errors - identical replication	51
2.1.3	How to overcome trends - randomization and arrangement in blocks	51
2.1.4	Normalization, centring, orthogonal design	53
2.1.5	Not realizable, irregular combinations - the experimental region	54
2.2	Factorial designs - the heart of DoE	55
2.2.1	Two levels, two factors - 2 ² -design	55
2.2.2	Two levels, three factors - 2 ³ -design	56
2.2.3	The general design with two levels – 2 ^k -design	61
2.2.4	Factorial designs with centre-points	62
2.2.5	Blocking with factorial designs	63
2.3	Fractional factorial designs - to separate the wheat from the chaff	66
2.3.1	Basic principle of the reduction - confounding	66
2.3.2	Blocking - perfect suited for the 2 ⁴⁻¹ -design	69
2.3.3	Types of fractional factorial designs	71
·2.3.4	Plackett-Burmann designs	72
2.3.5	DoE in colour measurement of a red-metallic base coat -	
2.0.0	2 ⁶⁻¹ -fractional factorial design	72
2.4	Non-linear effect designs	76
2.4.1	Central composite designs	77
2.4.2	Three- and higher level designs	80
2.4.3	Mixed designs	80
2.4.4	Box-Behnken designs	84
2.4.5	D-optimal designs – egg-laying wool-milk-sow	85
2.5	Mixture design - a huge area	85
2.6	Qualitative classification	88
2.7	References	93
3	Number-crunching-	
-	nothing ventured, nothing gained in data analysis	94
3.1	Evaluation of raw data	94
3.1.1	Transformation	94
3.1.2	Outliers	95
3.2	Confidence intervals - where are the limits?	95
3.3	Regression - the best model	95
3.3.1	Basic principles	95
3.3.2	Confidence intervals for the model parameters	99
3.3.3	Basic principles and standard assumptions for regression analysis	101
3.4	Residual diagnostic - what does the deviations mean?	103
3.5	Analysis of variance – how certain we can feel?	105
3.5.1	Introduction	105
5.5.1	III VAUVIIVII	100

Contents

9

3.5.2	Example: Colour measurement of a base coat - ANOVA	111
3.6	References	114
0.0	10101011005	
4	Parametric optimization and sensitivity analysis –	
	finding a needle in the haystack	116
4.1	Strategies for optimization - how we can do it better	116
4.1.1	Method of the steepest ascent/descent	117
4.1.2	Box-Wilson's method	117
4.1.3	EVOP-Method (evolutionary operations)	117
4.1.4	Simplex-method	118
4.1.5	Further optimization methods	118
4.2	Multiple responses	118
7.2	Example: Multiple optimization of blocking and film formation	110
	in a clear coat	119
	Example: Optimization of an indoor paint	121
401	• •	125
4.3.1	Qualitative analysis of the response surface	
400	Example: Disturbance in levelling of a pigmented base coat	125
4.3.2	Quantitative analysis of the regression model	129
4.3.3	Taguchi-method	129
	Example: Micro foam in a thick-coat glaze finish	130
4.4	References	132
_		
5	DoE-Software - do not develop the wheel once more	134
	Autonomous commercial software-packages for DoE:	134
	Statistic packages	135
	EXCEL-based Software	135
Appen	dix 1 - Precision, trueness and accuracy	136
Á		40-
Appen	dix 2 - Location and spread parameters	
	Example: pH-value of a lime paint	138
	Example: pH-value of lime paints	139
Appen	dix 3 – Normal distribution	
	Example: pH-value of a lime paint	14
	References	14
Appen	dix 4 - Confidence intervals	14
	Example: pH-value of lime paints - continuation	14
Appen	dix 5 - Hypothesis, tests and conclusions - statistical tests	14
	Example: Picking mushrooms	15
	Example: Comparison of two standard deviations	
	Example: ANOVA - comparison of two square sums	
	References	
Apnen	dix 6 – Three-component diagrams	. 15
Phou		
Annen	dix 7 – Linear regression	. 15
Phou	Example: Estimation of the glass transition temperature via DSC	
	References	
	Italvi viivoj	

10 Contents

Appendix 8 - Failure mode and effect analysis, FMEA References	
Appendix 9 - General references	_. 159
Acknowledgements	160
Author	161
Index	163