

Contents

1	Motivations and Background	1
1.1	Introduction	1
1.2	A few words about thermodynamics	3
1.3	A few words about ergodic dynamical systems	5
1.3.1	Measure spaces and measurable functions	5
1.3.2	Probability spaces, random variables and entropy	9
1.3.3	Ergodic dynamical systems	12
1.4	Exercises	16
2	Introduction to Kinetic Theory of Gases	17
2.1	Introduction	17
2.2	The Boltzmann kinetic theory of gases	18
2.2.1	Derivation of the Boltzmann transport equation	21
2.2.2	Equilibrium solutions of the Boltzmann transport equation	23
2.3	Thermodynamics of a free ideal gas	28
2.3.1	Derivation of thermodynamic properties	28
2.3.2	Entropy and convergence to thermodynamic equilibrium	30
2.4	The Kac ring model	36
2.5	Exercises	44
3	Gibbsian Formalism for Continuous Systems at Equilibrium	47
3.1	Introduction	47
3.2	Definition of Gibbs ensemble	51
3.2.1	The ergodic hypothesis	55
3.2.2	The problem of existence of integrals of motion	61
3.3	Microcanonical ensemble	66
3.3.1	Fluctuations and the Maxwell distribution	70
3.3.2	Thermodynamics of a free ideal gas	72
3.4	Canonical ensemble	75
3.4.1	Thermodynamics of a free ideal gas	83
3.5	Grand canonical ensemble	85
3.5.1	Thermodynamics of a free ideal gas	91
3.6	Existence of the thermodynamic limit	92

3.6.1	Van Hove interactions	94
3.7	The virial expansion	97
3.8	The problem of phase transitions	100
3.9	Exercises	105
4	Introduction to Ising Models	109
4.1	Introduction	109
4.2	Definition of Ising models	111
4.3	Gibbsian formalism for Ising models	113
4.3.1	Canonical ensemble	115
4.3.2	Thermodynamics and thermodynamic limit	119
4.4	One-dimensional Ising model	124
4.4.1	Partition function	125
4.4.2	Thermodynamics	130
4.5	Two-dimensional Ising model	131
4.5.1	Some algebraic tools: spinor analysis	134
4.5.2	Algebraic structure of the transfer matrix	138
4.5.3	The case $H = 0$. Diagonalization of the transfer matrix	142
4.5.4	The case $H = 0$. Partition function in the thermodynamic limit	149
4.5.5	The case $H = 0$. Thermodynamics	152
4.6	Exercises	158