Contents

1	Intr	oductio	on	1	
	1.1	First and Second Principles of Thermodynamics			
		1.1.1	Ideal (Perfect) Gas Laws	2	
		1.1.2	Ideal Gas State Equation	4	
		1.1.3	Mixtures	4	
		1.1.4	Specific Heat	5	
		1.1.5	First Principle of Thermodynamics (Robert Mayer 1842)	6	
		1.1.6	Second Principle of Thermodynamics (Sadi Carnot 1824)	12	
	1.2	Exerg	y and Anergy. Heat Exergy. Exergy of Closed Systems.		
		Exergy of Open Systems. Relationship Between Exergy Dissipation			
		and E	ntropy Creation. Non-equilibrium Linear Phenomenological		
		Conne	ection Between Generalized Forces and Currents	24	
		1.2.1	Heat Exergy	24	
		1.2.2	Exergy of Closed Systems	27	
		1.2.3	Exergy of Open Systems. Relationship Between Exergy		
			Dissipation and Entropy Creation	29	
		1.2.4	Non-equilibrium Linear Phenomenological Connection		
			Between Generalized Forces and Currents	33	
	1.3	Equilibrium of Thermodynamic Systems and Phase			
		Transformations			
		1.3.1	Thermodynamic Stability and Equilibrium	35	
		1.3.2	Equilibrium Conditions of a Homogeneous Isolated		
			System. TPT Equilibrium Point and Static Equilibrium	38	
		1.3.3	Phase Equilibrium Conditions of Monocomponent		
			and Binary Systems. TPT Ideal Point and Dynamic		
			Equilibrium	4(
		1.3.4	Phase Transformations. Gibbs Rule of Phases	43	
		1.3.5	Clapeyron-Clausius Equation	45	
	1.4				
		1.4.1	Absorption Cycle Introduction	40	
		1.4.2	Basic Absorption Cycles	49	
		1.4.3	Ideal Cycles	49	
		1.4.4	Selected Topic of Solutions Thermodynamics	5.	
		1.4.5	Condensation and Evaporation of Binary Mixtures	54	

xii Contents

		1.4.6	Dissolution (Mixing) Heat of Binary Mixtures	57	
		1.4.7	Absorption Cycle Charts	63	
		1.4.8	Working Fluid-Absorbent Mixtures Model	69	
	Refe	erences .		80	
2	Mas	s and I	Heat Exchange Analysis of the Absorption Processes:		
	The	Divide	d Device Method	83	
	2.1	Heat I	Exchange Analysis of Isobar Absorption Processes		
			Gliding Temperature	83	
	2.2	The D	vivided Device Method for Isobar Absorption Processes		
			Exchange Assessment	88	
	Refe			92	
3	Coa	hsorbe	nt Cycles	93	
_	3.1		uction	93	
	3.2		uncated Heating and Cooling Coabsorbent Cycles	93	
	J.2	3.2.1	Nontruncated Cooling Coabsorbent Cycle	94	
		3.2.2	Nontruncated Heating (Heat Transformer) Coabsorbent	7	
		J.Z.Z	Cycle	127	
		3.2.3	Cycle Change of Place	130	
		3.2.4	Nontruncated Coabsorbent-Condensing Cycle	131	
		3.2.5	Non-isobar Nontruncated Coabsorbent Cycles	134	
	Dof		Non-isodal Nontunicated Coabsorbent Cycles	168	
	Keit	ciciices		100	
4	A Few New Coabsorbent Cycle Configurations: The Internal				
			on and the Coabsorbent Cycle Truncation	171	
	4.1		ce (Fractal) Truncation of the Coabsorbent Cycle	175	
		4.1.1	Cooling Cycle.	176	
		4.1.2	Heating Cycle	178	
		4.1.3	Truncation Theory	179	
		4.1.4	Truncation Columns, Common-Column Cycles,		
			Column Cycles, Reverse Truncated Cycles and Fractals		
			Symbolic Representation	187	
	4.2		l of Cooling and Heating Truncated Cycles	192	
		4.2.1	Gax Use in "Acr" Provided Truncated Coabsorbent Cycles	195	
		4.2.2	Model Results of Cooling Truncated Coabsorbent Cycles	220	
		4.2.3	Model Results of Heating Truncated Coabsorbent Cycles	227	
		4.2.4	Auxiliary Mechanical Work Consumption in Truncated		
			Cycles	232	
	4.3	Hybri	d Truncation of the Coabsorbent Cycle	234	
		4.3.1	Hybrid Simple Truncated Cooling Cycles	238	
		4.3.2	Hybrid Simple Truncated Heating Cycles	240	
	Refe	erences			

Contents xiii

5	Effectiveness of Coabsorbent Cycles and Cascades According to First and Second Principles of Thermodynamics					
	5.1	Cooling Fractal (Nontruncated Cycle) COP	249			
	5.2	Heating Fractal (Nontruncated Cycle) COP	250			
	5.3	Truncated Cooling Fractal COP	252			
	5.4	Truncated Heating Fractal COP	253			
	5.5	Hybrid Cooling Fractal COP	255			
	5.6	Hybrid Heating Fractal COP	258			
	5.7	COP of Hybrid Cooling and Heating Fractals Cascades	261			
		5.7.1 Deep Cooling Cascade Study Case	268			
		5.7.2 Cold Region Heating Cascade Study Case	269			
	Refe	erences	269			
6	External Coabsorbent Cycle Composition					
_	6.1	The Pressure-Stages Multi-Effect Coabsorbent Cooling				
		Cycle (PSMECCC) Thermal Analysis	271			
		6.1.1 Basic Lemma of the Pressure-Stages Multi-Effect				
		Coabsorbent Cooling Cycle (PSMECCC) Computation	274			
		6.1.2 Carnot COP Theorem of the Pressure-Stages Multi-Effect				
		Coabsorbent Cooling Cycle (PSMECCC)	277			
	6.2	Use Analysis of Water-Lithium Bromide Pressure-Stages				
		Multi-Effect Coabsorbent Cycle (PSMECCC) in Air Conditioning	282			
		6.2.1 Structure and Heat Exchange Analysis of PSMECCC	283			
		6.2.2 PSMECCC-Classic Air Conditioning System Link	285			
		6.2.3 PSMECCC (Heat Source) Energy Savings in Air				
		Conditioning	291			
	Refe	erences	297			
_	_	,				
7		bsorbent Cycles Exergy Evaluation	299			
	7.1	Simple Algorithm of the Heat Pumping Supplied in Cogeneration	301			
		7.1.1 Steam Rankine Cycle-Coabsorbent Heat Pump Link	303			
		7.1.2 Steam Rankine Cycle-Coabsorbent Cooling Cycle Link	304			
	7.2	Exergy Efficiency Algorithm of Coabsorbent Cooling Cycles	305			
		7.2.1 Exergy Efficiency Results of Coabsorbent and mvc				
		Cooling Cycles	312			
	7.3	Exergy Efficiency Algorithm of Coabsorbent Heating Cycles	316			
		7.3.1 Exergy Efficiency Results of Coabsorbent				
		and Mechanical Vapor Compression Heating Cycles	319			
	7.4	Cogeneration and Trigeneration Exergy Efficiency Algorithm				
		of Coabsorbent Cooling and Heating Cycles	321			
	Refe	erences	325			

xiv Contents

8			ynamic Approach of Mechanical Vapor	
		-	on Refrigeration and Heating COP Increase	327 327
	8.1	I Introduction		
	8.2	Methods of Increasing the Refrigeration Effectiveness		
		and Th	eirs Ideal Thermodynamic Limits	329
		8.2.1	TWRC Method	329
		8.2.2	TTRC Method	338
	8.3	Refrige	eration Cycles Provided with TWRC	340
		8.3.1	TWRC (SSRC, CWF)	340
		8.3.2	TWRC (SSRC, CWF, CSTSGS)	342
		8.3.3	TWRC (SSRC)	342
		8.3.4	TWRC (TSRC, CWF, CSTSGS)	343
		8.3.5	TWRC (THSRC, CWF, CSTSGS) and TWRC	
			(MSRC, CWF, CSTSGS)	345
		8.3.6	Air Liquefaction and Separation Cycles	
			Provided with TWRC	346
	8.4	Result	s of Refrigeration Cycles Provided with TWRC	347
		8.4.1	TWRC (SSRC, CWF), TWRC (SSRC, CWF, CSTSGS)	349
		8.4.2	TWRC (SSRC)	350
		8.4.3	TWRC (TSRC, CWF, CSTSGS)	351
		8.4.4	TWRC (THSRC, CWF, CSTSGS)	352
	8.5	Furthe	r Results Concerning TWRC Feasibility	352
	8.6		eration Cycles Provided with TTRC	360
	8.7		and TTRC Heat Pumping Theory and Recent Results	361
		8.7.1	TWRC and TTRC Heat Pumping Theory	361
		8.7.2	TWRC and TTRC Heat Pumping Recent Results	370
	Refe			381
9			ilibrium Phenomenological Two-Point Theory of Mass	
	and		ransfer in Physical and Chemical Interactions	383
	9.1	Applic	cation to NH ₃ -H ₂ O and Other Working Systems	383
		9.1.1	A Non-equilibrium Phenomenological Approach	
			of the Coupled Mass and Heat Transfer in Physical	
			Mono-, Bi- and Particular Polycomponent Gas-Liquid	
			Interactions	385
		9.1.2	A Non-equilibrium Phenomenological Approach of the	
			Coupled Mass and Heat Transfer in Chemical Interactions	393
	9.2	Non-e	quilibrium Phenomenological Theory Applications.	
			Studies of NH ₃ -H ₂ O, NH ₃ , H ₂ O and Other Working	
			Gas-Liquid Interactions. Case Study of a Chemical	
			ction Force	396
	9.3		quilibrium (Natural) and Equilibrium (Ideal)	
			nodynamical Forces	405
	9.4		ling of the NH ₃ -H ₂ O Bubble Absorption, Analytical	_
			of Absorption and Experiments	409

Contents xv

		_		
		9.4.1	Model of the Bubble Absorption Applying the PhHGD Tool	409
		9.4.2	Analytical Study of NH ₃ –H ₂ O Absorption	419
			Experimental	422
	9.5		-equilibrium Phenomenological (Two-Point) Theory	
		of Mass and Heat Transfer: Forces, System-Source Interactions		
			ermodynamic Cycle Applications	422
		9.5.1	Natural Forces of the Coupled and Non-coupled Mass	
			and Heat Transfer	424
		9.5.2	System-Source Interactions	432
		9.5.3	Phenomenological Coefficients of Mixed Transfer	
			and the Theorem Concerning the Maximization Thereof	437
		9.5.4	Application of TPT to the Thermodynamic Cycles	441
	Refe	rences.		453
10			ding of the Laplace Equation: Variational Numerical	
	and		cal Approach of the Liquid Capillary Rise Effect	457
	10.1		luction	457
•	10.2	A Nev	w Wording of the Laplace Equation	457
	10.3	Variat	ional Numerical Approach	460
	10.4	Analy	rtical Approach	463
	Refe	rences.		467
11	Mar	angoni	Convection Basic Mechanism Explanation,	
	Pseu	do-Ma	rangoni Cells Model and Absorption-Desorption	
	Mas	s and H	Ieat Exchangers Model Application	469
	11.1	Introd	duction	469
	11.2	True 1	Marangoni Effect Mechanism	469
	11.3		lo-Marangoni Ammonia-Water Cell Modeling	474
	11.4		lo-Marangoni Ammonia-Water Cell Modeling Results	478
	11.5		lo-Marangoni Water-Lithiumbromide Cell Modeling	
			Modeling Results	484
		11.5.1		484
		11.5.2		
			Cell Modeling	487
		11.5.3		
			Cell Modeling Results	489
	11.6	Inclin	ned Surface Marangoni Convection Cell Evaluation.	
			nonia-Water Absorption—Desorption Mass and Heat	
			angers TPT Model Application	493
		11.6.1	-	493
		11.6.2		494
		11.6.3		495
		11.6.4		496
		11.6.5	-	490
	Dafa			497
	References			