Contents

I	Intr	oaucuc)n	I	
	1.1	Gener	al Remarks	1	
	1.2	Thin F	Film Physics and Solid State Physics	4	
	1.3	A Few	Words on Optical Coating Preparation	7	
		1.3.1	PVD and CVD Techniques	7	
		1.3.2	Some Considerations on PIAD	9	
		1.3.3	Property Correlations	12	
	1.4	To the	Content and Organisation of this Book	14	
	Refe	erences.		15	
Pa	art I	Basics	•		
2	Bas	ic Knov	wledge on Optical Constants	21	
	2.1		Classical Dispersion Models in Linear Optics	21	
	2.2	Analy	tical Properties of the Dielectric Function	26	
	2.3	Optica	al Constants and Mass Density in the Classical Picture	29	
	2.4	•			
		Chara	cterization Practice: Classical Models and Beyond	34	
		2.4.1	Preliminary Remarks	34	
		2.4.2	Brendel Model	40	
		2.4.3	Tauc-Lorentz-Model	42	
		2.4.4	Cody-Lorentz-Model	43	
		2.4.5	Forouhi-Bloomer-Model	44	
	2.5	2.5 Material Mixtures		44	
		2.5.1	General Idea	44	
		2.5.2	Maxwell Garnett (MG) Approach	47	
		2.5.3	Lorentz-Lorenz (LL) Approach	48	
		2.5.4	Effective Medium Approximation (EMA)		
			or Bruggeman Approach	49	
		2.5.5	A Model Calculation Based on the Maxwell		
			Garnett Approach	50	
	Ref	erences	• • • • • • • • • • • • • • • • • • • •	51	

xvi Contents

3	Plan	e Interfaces	55		
	3.1	3.1 Fresnel's Formulas			
	3.2	Real Films, Real Surfaces	58		
		3.2.1 Some Experimental Results	58		
		3.2.2 Remarks on Optical Isotropy	61		
		3.2.3 Remarks on Optical Inhomogeneity	63		
		3.2.4 Remarks on Surface Roughness	63		
	3.3	Sharp Interfaces Versus Continuous Profiles	70		
	3.4	Intensity Coefficients	72		
	_	References			
4	Thir	Films, Substrates, and Multilayers	81		
	4.1	Single Films	81		
		4.1.1 General Equations	81		
		4.1.2 Halfwave Layers	83		
		4.1.3 Quarterwave Layers	83		
		4.1.4 Layers with a Weak Refractive Index Gradient			
		(Normal Incidence)	87		
	4.2	Substrates	92		
	4.3	Single Film on a Substrate	93		
	4.4	Multilayers	95		
	4.5	Examples	97		
	1	4.5.1 Homogeneous Quarter- and Halfwave Layers	97		
		4.5.2 Two QW-Layers	98		
		4.5.3 Quarterwave (QW) Stacks	99		
		4.5.4 Bragg Reflectors	104		
			104		
		4.5.5 Rugate Filters			
	D (4.5.6 Narrow Bandpass Filters (NBP)	109		
	Refe	rences	113		
Pa	rt II	Reverse Search Procedures			
5	Exp	erimental Determination of Thin Film Optical Constants	117		
•	5.1		117		
	J.1	5.1.1 Ex Situ Spectrophotometry	117		
		5.1.2 Measurement of Thermal or Vacuum Shifts	127		
		5.1.3 In Situ Transmission Spectroscopy During Film Growth	127		
		5.1.4 Remarks on Ellipsometry	131		
	5.2	Optical Constants of Substrates	131		
	5.3	Thin Films: Quick Optical Gap Determination	133		
	5.4	Thin Films: Quick Optical Gap Determination	133		
	4. ر	5.4.1 Normal Incidence	133		
			136		
		3.7.2 Ounque incluence	100		

Contents xvii

	5.5	U				
		on the	Oscillator Model	137		
		5.5.1	General Mathematical Approach	137		
		5.5.2	Considerations on the Data Grid	140		
			Examples	143		
		5.5.4	•	148		
	5.6		Films: Optical Constants Determination Without			
	3.0		plicit Use of Dispersion Models.	149		
	- 7			145		
	5.7	_	htforward Re-Engineering of Multilayer Systems	1.51		
			on In Situ Transmittance Data	151		
	Refe	rences.		155		
6	Mat	erial A	spects in Coating Design	159		
	6.1		uctory Remarks	159		
	6.2		al Rules	160		
	0.2	6.2.1	A Theorem on Solvability and Conclusions			
		0.2.1	from the Maximum Principle	160		
		6.2.2	Cutoff Wavelength and Range of Refractive	100		
		0.2.2	Indices Available	162		
		6.2.3	Oblique Incidence.	164		
	()	0	*	165		
	6.3	_	erwave Stacks and Optical Constants			
	6.4		band Antireflection Coatings and Optical Constants	166		
	6.5		oility Considerations and Computational Manufacturing	170		
		6.5.1	Motivation	170		
		6.5.2	Idea of Computational Manufacturing Runs	171		
		6.5.3	Error Data Acquisition	172		
		6.5.4	Example: Gain Flattening Filter	179		
		6.5.5	Implementation of Computational Manufacturing			
			into the Coating Production Chain	180		
	References					
Do	rt III	Dos!	Coating Materials for IIVINIS Applications			
га	111 111	Dasi	c Coating Materials for UV/VIS Applications			
7	Oxio	le Coat	tings: Porous and Dense Films	187		
	7.1		uction	187		
	7.2					
	7.3	Param	eter Correlations in Important Oxide Coating Materials	196		
		7.3.1	Titanium Dioxide TiO ₂	196		
		7.3.2	Niobium Pentoxide Nb ₂ O ₅	196		
		7.3.3	Tantalum Pentoxide Ta ₂ O ₅	199		
		7.3.4	Zirconium Dioxide ZrO ₂	199		
		7.3.5	Hafnium Dioxide HfO ₂	199		
		7.3.6	Aluminum Oxide Al ₂ O ₃	203		
		7.3.7	Silicon Dioxide SiO ₂	204		
	Refe			205		

xviii Contents

8	Other UV/VIS Coating Materials				
	8.1	Fluoride Coatings	209		
	8.2	Fluoride-Enhanced Aluminum as a VUV Reflector	214		
	8.3	Silver Films in Reflector Coatings	217		
	8.4	Organic Coatings and Derivatives	220		
		8.4.1 Amorphous Hydrogenated Carbon Layers	220		
		8.4.2 Specifics of Organic Molecular Films: Examples	223		
		8.4.3 Extended Detail: Basic Ideas of the Semiclassical			
		Description of Molecular Spectra.	231		
	References				
Pa	rt IV	Subwavelength- and Nanostructured Coatings			
9	Hete	rogeneous Coatings: General Remarks	245		
	9.1	Attempt of a Classification	245		
	9.2	Grating Waveguide Structures	250		
		9.2.1 General Idea	250		
		9.2.2 Propagating Modes and Grating Period	252		
		9.2.3 Impact of Absorption	254		
		9.2.4 Example: Narrowline Reflector Design	255		
	Refe	rences	257		
10	Strongly Porous Materials and Surface Structures				
	10.1	Motheye Structures as Low Effective Index Films			
		for Antireflection Purposes	259		
		10.1.1 Examples of Periodic Motheye Structures	259		
		10.1.2 Stochastic Motheye Structures on Plastic Surfaces	260		
		10.1.3 Remarks on the Function Principle			
		of Motheye Structures	261		
	10.2	Stochastic Surface Structures on Absorbing Materials	263		
		Porous Silicon Dioxide Layers	266		
	Refe	rences	266		
11	Dielectric Mixtures				
		Motivation	269		
	11.2	Examples of Inorganic Mixture Coatings	272		
		11.2.1 Optical Parameters Obtained from Oxide Mixtures	272		
		11.2.2 Stress in Mixture Coatings	274		
	11.3	A Few Words on Inorganic-Organic Hybrid Coatings	275		
		rences	277		
12		al Island Films	279		
		First Considerations	279		
	12.2	Metal Islands in a Dielectric Host: A Handable Building			
		Block for Optical Coating Design	283		

Contents xix

12.3 Effective Optical Constants of Metal Island Films 12.4 Experimental Examples	286 295 295
Constants on the Amount of Copper	297
Constants on the Deposition Temperature	305 307 307
of Aluminum Films	309 311 314
13 Concluding Remarks	317 319
Appendix A: Simple Classical Model for the Treatment of Elastic Collisions in Application to the Effects of Momentum Transfer Events as Occurring in a PIAD Deposition Process: Noble Gas Incorporation, Film Densification and Effects on Stoichiometry	321
Appendix B: Huygens Principle in Thin Film Optics	335
Appendix C: Simple Model for Describing the Impact of Pores on Refractive Index, Shift, and Stress in Optical Coatings.	351
Appendix D: Simple Model for Estimating the Absorption Frequency in Planar Aromatic Systems	367
Subject Index	375