Contents

Preface — v

Table for physical constants ---- ix

1	Introduction —— 1
1.1	Characteristic of electron microscopy —— 1
1.2	What information can be obtained by electron microscopy? —— 2
1.3	Various types of electron microscopy —— 5
2	Structure and principle of electron microscopes ——— 8
2.1	Structure of transmission electron microscope —— 8
2.2	Observation mechanism of atoms by electrons —— 10
2.3	Information from electron diffraction pattern —— 13
2.4	High-resolution electron microscopy —— 15
2.5	Scanning electron microscope —— 17
2.6	Electron energy-loss spectroscopy —— 19
2.7	Energy dispersive X-ray spectroscopy —— 22
2.8	High-angle annular dark-field scanning TEM —— 23
2.9	Electron holography and Lorentz microscopy —— 24
2.10	Image simulation —— 26
3	Practice of HREM —— 28
3.1	Sample preparation —— 28
3.2	Specimen preparation methods —— 28
3.3	Structure analysis by X-ray diffraction —— 31
3.4	TEM observation —— 33
3.5	HREM observation —— 38
3.6	Fourier filtering —— 41
3.7	Resolution of HREM images —— 42
3.8	Prevention of damage and contamination —— 43
3.9	Taking images and reading data —— 44
3.10	Mental attitude for TEM —— 45
4	Characterization by HREM —— 46
4.1	What information can be obtained? —— 46
4.2	Direct atomic observation —— 46
4.3	Crystallographic image processing —— 51
	Crystatiographic image processing 31

Atomic coordinates from HREM image —— 54

4.5

4.6	Combination of HREM and electron diffraction —— 56
4.7	Quantitative HREM analysis with residual indices — 61
4.8	Detection of atomic disordering by difference image —— 64
4.9	Combination of diffraction amplitudes and phases — 70
4.10	Structural optimization by molecular orbital calculation —— 72
4.11	Three-dimensional high-resolution imaging —— 74
4.12	Detection of doping atoms in C_{60} solid clusters — 77
5	Electron diffraction analysis of nanostructured materials —— 87
5.1	Modulated superstructures of Tl-based copper oxides 87
5.2	Modulate structures of lanthanoid-based copper oxides —— 91
5.3	Oxygen ordering in YBa ₂ Cu ₃ O _{7-x} —— 94
5.4	Structures of Bi-based copper oxides —— 98
5.5	Twin structures in BN nanoparticles —— 100
6	HREM analysis of nanostructured materials —— 110
6.1	Defect structures —— 110
6.2	Interfaces and surface structures —— 113
6.3	GaAs-based semiconductor devices —— 116
6.4	Zeolite materials —— 119
6.5	Solid clusters and doping atoms —— 120
6.6	Surface structure with light elements —— 122
6.7	Crystal structures of Pb-based copper oxides —— 124
6.8	Structures of Sm-based copper oxides —— 129
6.9	Y-based copper oxides with high J_c —— 131
6.10	BN nanotubes —— 134
6.11	BN nanotubes with cup-stacked structures —— 140
6.12	BN nanotubes encaging Fe nanowires —— 145
6.13	Nanoparticles with 5-fold symmetry —— 149
A	Appendix —— 158
A.1	7 crystal systems and 14 Bravais lattices in three dimensions —— 158
A.2	Miller indices and direction in the crystals —— 159
A.3	Distances d_{hkl} and angles ϕ of lattice planes —— 160

Index —— 163