

Contents

List of Contributors *XIII*

Preface *XVII*

Part I Primordial Metal–Sulfur-Mediated Reactions 1

1	From Chemical Invariance to Genetic Variability 3
	<i>Günter Wächtershäuser</i>
1.1	Heuristic of Biochemical Retrodiction 3
1.2	Retrodicting the Elements of Life 5
1.3	Retrodicting Pioneer Catalysis 6
1.4	Retrodicting Metabolic Reproduction and Evolution 10
1.5	Retrodicting Pioneer-Metabolic Reactions 11
1.6	Early Evolution in a Spatiotemporal Flow Context 13
	Acknowledgments 16
	References 16
2	Fe–S Clusters: Biogenesis and Redox, Catalytic, and Regulatory Properties 21
	<i>Yvain Nicolet and Juan C. Fontecilla-Camps</i>
2.1	Introduction 21
2.2	Fe–S Cluster Biogenesis and Trafficking 22
2.3	Redox Properties of Fe–S Clusters 27
2.4	Fe–S Clusters and Catalysis 28
2.4.1	Redox Catalysis 28
2.4.2	Nonredox Fe–S Cluster-Based Catalysis 30
2.5	Fe–S Clusters and Oxidative Stress 32
2.6	Regulation of Protein Expression by Fe–S Clusters 33
2.6.1	Eukaryotic Iron Regulatory Protein 1 (IRP1) 34
2.6.1.1	IRP1 and Fe–S Cluster Biogenesis 35
2.6.1.2	Reactive Oxygen Species and IRP1 Fe–S Cluster Stability 35
2.6.1.3	X-Ray Structural Studies of IRP1–IRE Complexes 36
2.6.2	Bacterial Fumarate Nitrate Reduction Regulator (FNR) 37

2.6.3	The ISC Assembly Machinery Regulator IscR	38
2.7	Conclusion	38
	References	39

Part II Model Complexes of the Active Site of Hydrogenases – Proton and Dihydrogen Activation 49

3	[NiFe] Hydrogenases 51
	<i>Joe Dawson, Carlo Perotto, Jonathan McMaster, and Martin Schröder</i>
3.1	Introduction 51
3.2	Introduction to [NiFe] Hydrogenases 52
3.3	Nickel Thiolate Complexes as Analogs of [NiFe] Hydrogenase 52
3.4	[NiFe] Hydrogenase Model Complexes 59
3.4.1	Amine $[N_2Ni(\mu-S_2)Fe]$ Complexes 59
3.4.2	Phosphine $[P_2Ni(\mu-S_2)Fe]$ Complexes 60
3.4.3	Thiolate $[S_xNi(\mu-S_y)Fe]$ Complexes 63
3.4.4	Polymetallic $[Ni(\mu-S)_zFe_y]$ Complexes 65
3.5	Analogs of [NiFe] Hydrogenase Incorporating Proton Relays 67
3.5.1	Nickel Complexes Incorporating Protonation Sites 68
3.5.2	[NiFe] Complexes Incorporating Protonation Sites 72
3.6	Perspectives and Future Challenges 74
	Acknowledgments 74
	References 74
4	[FeFe] Hydrogenase Models: an Overview 79
	<i>Ulf-Peter Apfel, François Y. Pétillon, Philippe Schollhammer, Jean Talarmin, and Wolfgang Weigand</i>
4.1	Introduction 79
4.2	Synthetic Strategies toward [FeFe] Hydrogenase Model Complexes 81
4.3	Properties of Model Complexes 83
4.3.1	Biomimetic Models of the “Rotated State” 83
4.3.2	Electron Transfer in [FeFe] Hydrogenase Models 84
4.3.3	Protonation Chemistry of [FeFe] Hydrogenase Models 86
4.3.3.1	Hydride Formation 86
4.3.3.2	Ligand Protonation and Proton Relays 88
4.3.4	Water-Soluble Hydrogenase Mimics 94
4.4	Conclusion 96
	References 96
5	The Third Hydrogenase 105
	<i>Callum Scullion and John A. Murphy</i>
5.1	Introduction 105
5.2	Initial Studies of Hmd 106
5.3	Discovery that Hmd Contains a Bound Cofactor 109

5.4	Discovery that Hmd is a Metalloenzyme	109
5.5	Crystal Structure Studies of [Fe] Hydrogenase	111
5.6	Mechanistic Models of [Fe] Hydrogenase	118
5.6.1	Studies Before the Most Recent Assignment of the FeGP Cofactor	118
5.6.2	Studies After the Most Recent Assignment of the FeGP Cofactor	120
5.6.3	Synthesized Model Complexes of the FeGP Cofactor	126
	References	134
6	DFT Investigation of Models Related to the Active Site of Hydrogenases	137
	<i>Claudio Greco and Luca De Gioia</i>	
6.1	Introduction	137
6.2	QM Studies of Hydrogenases	138
6.3	QM Studies of Synthetic Complexes Related to the Active Site of Hydrogenases	145
6.3.1	DFT Studies about Structural and Redox Properties of Synthetic Complexes Related to the Active Site of [FeFe] Hydrogenases	146
6.3.2	DFT Studies about the Reactivity of Synthetic Models Related to the Active Site of [FeFe] Hydrogenases	149
6.3.3	DFT Studies about Regiochemistry of Protonation of Synthetic Complexes Related to the Active Site of [FeFe] Hydrogenases	152
6.3.4	DFT Studies about the Isomerization of Synthetic Complexes Related to the Active Site of [FeFe] Hydrogenases	154
6.4	Conclusions	156
	References	156
7	Mechanistic Aspects of Biological Hydrogen Evolution and Uptake	161
	<i>Joseph A. Wright and Christopher J. Pickett</i>	
7.1	Introduction	161
7.2	[FeFe] Hydrogenases	161
7.2.1	Overview of the Catalytic Cycle	161
7.2.2	The Nature of the Bridgehead Atom	163
7.2.3	Structural Features of the Resting State (H_{ox}) and Reduced State (H_{red}) of the Active Site	164
7.2.4	Relationship between Structural and Spectroscopic Properties of H_{ox} , H_{red} , and H_{sred}	164
7.2.5	The Rotated State and Mixed Valency: Synthetic Systems	167
7.2.6	Hydrides	170
7.2.7	Hydrides and Electrocatalysis of Hydrogen Evolution	174
7.2.8	Dihydrogen Oxidation	177
7.2.9	Final Comments	180
7.3	[NiFe] Hydrogenases	180

7.3.1	Overview of the Catalytic Cycle	180
7.3.2	Structural Models of Ni-A, Ni-B, and Ni-SI States	182
7.3.3	Hydride Chemistry Related to Ni-C/Ni-R: Functional Models	183
7.3.4	Final Comments	186
7.4	[Fe] Hydrogenase	186
7.4.1	Overview	186
7.4.2	Biological Mechanism	187
7.4.3	Model Studies	189
7.4.4	Final Comments	191
7.5	Nitrogenase	191
7.5.1	Overview	191
7.5.2	Hydrogen Evolution by Mo-Nitrogenase	192
7.5.3	Paramagnetic Bridging Fe/Fe Hydrides	193
7.5.4	Final Comments	194
	References	194

Part III Nitrogen Fixation 199

8	Structures and Functions of the Active Sites of Nitrogenases	201
	<i>Chi Chung Lee, Jared A. Wiig, Yilin Hu, and Markus W. Ribbe</i>	
8.1	Introduction	201
8.2	Properties of Mo Nitrogenase	202
8.2.1	Properties of Fe Protein and its Associated Cluster	202
8.2.1.1	The Fe Protein Structure	202
8.2.1.2	The $[\text{Fe}_4\text{S}_4]$ Cluster	204
8.2.2	Properties of MoFe Protein and its Associated Clusters	204
8.2.2.1	The MoFe Protein	204
8.2.2.2	The P-Cluster	204
8.2.2.3	The FeMo-co	206
8.3	Catalysis by Mo Nitrogenase	206
8.3.1	The Thorneley–Lowe Model	207
8.3.1.1	The Fe Protein Cycle	207
8.3.1.2	The MoFe Protein Cycle	208
8.3.2	Recent Development	210
8.3.2.1	Alternative Pathway of N_2 Reduction	210
8.3.2.2	Plausible Structures of N_2 Reduction Intermediates	210
8.3.2.3	Alternative Substrates of Nitrogenase	211
8.4	Unique Features of V Nitrogenase	213
8.4.1	Structural Features of Fe Protein and its Associated Cluster	213
8.4.1.1	The Fe Protein	213
8.4.1.2	The $[\text{Fe}_4\text{S}_4]$ Cluster	214
8.4.2	Structural Features of VFe Protein and its Associated Clusters	214
8.4.2.1	The VFe Protein	214
8.4.2.2	The P-Cluster of VFe Protein	215
8.4.2.3	The FeVco	216

8.4.3	Catalytic Features of V Nitrogenase	217
8.5	Catalytic Properties of Isolated FeMo-co and FeVco	220
	Acknowledgments	221
	References	221
9	Model Complexes of the Active Site of Nitrogenases: Recent Advances	225
	<i>Frédéric Barrière</i>	
9.1	Introduction	225
9.2	Structural Models of Metal–Sulfur Clusters in the Nitrogenases	227
9.3	Functional Modeling at a Single Molybdenum Center	229
9.4	Functional Modeling at a Single Iron Center	231
9.5	The Hydrogen and Homocitrate Issues in Nitrogenase Model Chemistry	235
9.6	Sulfur– and Metal–Metal Interaction in Functional Models of Nitrogenase	238
9.7	Surface Chemistry and the Supramolecular Protein Environment	242
9.8	Conclusion and Outlook	243
	References	245
10	A Unified Chemical Mechanism for Hydrogenation Reactions Catalyzed by Nitrogenase	249
	<i>Ian Dance</i>	
10.1	Introduction	249
10.1.1	Nitrogenase: the Enzyme	249
10.1.2	FeMo-co	250
10.1.3	Where Does the Catalysis Occur on FeMo-co?	251
10.2	Investigations of Mechanism	251
10.2.1	Density Functional Simulations	252
10.2.2	The Coordination Chemistry of FeMo-co	253
10.2.3	Electronic Structure of FeMo-co	254
10.3	Hydrogen Supply for the Reactions of Nitrogenase	254
10.3.1	Multiple Protons are Needed for Catalytic Reaction Cycles	254
10.3.2	The Proton Supply Chain	255
10.3.3	Hydrogenation of FeMo-co	256
10.3.4	Hydrogen Atom Migration over FeMo-co	257
10.4	FeMo-co in Nitrogenase as a General Hydrogenating Machine	259
10.4.1	Modes of Substrate Binding to FeMo-co	259
10.4.2	Vectorial Hydrogenation of FeMo-co in Relation to Substrate Binding	260
10.4.3	The Intramolecular Hydrogenation Paradigm for the Catalytic Reactivity of FeMo-co	261

10.5	Chemical Mechanisms for the Catalysis of Substrate Hydrogenation at FeMo-co	263
10.5.1	How Does N ₂ Bond to FeMo-co?	263
10.5.2	Proposed Intimate Chemical Mechanism for the Catalysis of Hydrogenation of N ₂ to NH ₃ at FeMo-co	264
10.5.2.1	Possibilities	264
10.5.2.2	Preliminary Simulations	264
10.5.2.3	Complete 21-Step Choreography	265
10.6	Hydrogen Tunneling in the Nitrogenase Mechanism	267
10.6.1	Characteristics of H Atom Tunneling in Enzyme Reactions	267
10.6.2	Characteristics of H-Atom Transfer in Nitrogenase	268
10.7	Intramolecular Hydrogenation of Other Substrates	270
10.7.1	Formation of Dihydrogen	270
10.7.2	Hydrogenation of Alkynes	270
10.7.3	Hydrogenation of D ₂ ; the HD Reaction	273
10.7.4	Hydrogenation of CO and CO ₂	273
10.8	Interpretation of the Structure of FeMo-co and Its Surrounds	277
10.9	Mimicking Nitrogenase	278
10.10	Summary and Epilog	279
	Acknowledgments	280
	References	280
11	Binding Substrates to Synthetic Fe–S-Based Clusters and the Possible Relevance to Nitrogenases	289
	<i>Richard A. Henderson</i>	
11.1	Introduction	289
11.2	Mechanism of Nitrogenases	290
11.2.1	Detecting Substrates and Intermediates Bound to the Enzyme	292
11.2.2	Exploring Intermediates in the Enzyme Mechanism Using Calculations	294
11.3	Studies on Synthetic Clusters	296
11.3.1	Evidence for Substrates Bound to Synthetic Clusters	296
11.3.2	Mechanisms of Substrates Binding to Fe–S-Based Clusters	299
11.3.3	Mechanisms Peculiar to Clusters	303
11.3.4	Influence of Cluster Composition on Substrate Binding	304
11.3.5	Transient Binding of Substrates to Clusters	305
11.3.5.1	Influence of Metal Composition on Transient Binding Affinities of Substrates	309
11.3.5.2	Rates of Binding Substrates to Clusters	309
11.3.6	Protonation of Clusters	310
11.3.6.1	Kinetics and Thermodynamics of Protonation of Clusters	311
11.3.6.2	Timing of Binding Protons and Substrates to Clusters	311
11.3.6.3	The Problem of Binding Substrate Versus Reduction of Protons	313
11.4	Studies on Extracted FeMo-Cofactor	316

11.4.1	Evidence for Substrates Binding to Extracted FeMo-Cofactor	316
11.4.2	Rates of Substrate Binding to Extracted FeMo-Cofactor	318
11.5	The Future	320
	References	321
Part IV Miscellaneous: CO, RCN Activation, DMSO Reduction 325		
12	Sulfur-Oxygenation and Functional Models of Nitrile Hydratase	327
	<i>Davinder Kumar and Craig A. Grapperhaus</i>	
12.1	Introduction	327
12.2	Nitrile Hydratase	327
12.2.1	Significance	327
12.2.2	Enzyme Active Site	328
12.2.3	Reaction Cycle	329
12.3	Small-Molecule Mimics	330
12.4	Early S-Oxygenation Studies	332
12.5	Sulfur-Oxygenation of Co(III) NHase Mimics	333
12.5.1	N_2S_2 Co(III) Model Complexes	334
12.5.2	N_3S_2 Co(III) Model Complexes	335
12.5.3	N_2S_3 Co(III) Model Complexes	337
12.6	Sulfur-Oxygenation of Fe(III) NHase Mimics	339
12.6.1	N_2S_2 –Fe(III) Model Complexes	339
12.6.2	N_3S_2 –Fe(III) Model Complexes	340
12.6.3	N_2S_3 Fe(III) Model Complexes	341
12.7	Ruthenium Complexes	343
12.8	Conclusions/Challenges	344
	Abbreviations	345
	References	345
13	Molybdenum and Tungsten Oxidoreductase Models	349
	<i>Carola Schulzke and Ashta Chandra Ghosh</i>	
13.1	Introduction	349
13.2	Classification of Molybdenum- and Tungsten-Dependent Enzymes	351
13.3	Ligand Systems Commonly Used in Model Studies	353
13.4	Selected Molybdenum-Containing Enzymes and Relevant Modeling Chemistry	355
13.4.1	Enzymes of the Xanthine Oxidase (XO) Family	355
13.4.1.1	Crystal Structures and Active Site Composition of XO-Related Enzymes	355
13.4.1.2	Mechanistic Implications	356
13.4.1.3	Model Complexes for the Xanthine Oxidase Family	357
13.4.2	The Sulfite Oxidase (SO) Family	360
13.4.2.1	Crystal Structures and Active Site Composition of SO-Family Enzymes	360

13.4.2.2	Mechanistic Implications	361
13.4.2.3	Model Complexes for the Sulfite Oxidase Family	362
13.4.3	The DMSO Reductase (DMSOR) Family	365
13.4.3.1	Crystal Structures and Active Site Composition of the DMSOR Family Enzymes	367
13.4.3.2	Mechanistic Implications	368
13.4.3.3	Model Complexes for the DMSOR Family	369
13.5	Selected Tungsten-Containing Enzymes and Relevant Model Chemistry	372
13.5.1	The Aldehyde Ferredoxin Oxidoreductase (AOR) Family	372
13.5.1.1	Model Chemistry for the AOR Family	373
13.5.2	The Formate Dehydrogenase (FDH) Family of Enzymes	375
13.5.2.1	Model Chemistry for the W-FDH Family	376
13.5.3	Acetylene Hydratase	376
	References	377
Part V Applicative Perspectives		383
14	Electrode Materials and Artificial Photosynthetic Systems	385
	<i>Phong D. Tran, Marc Fontecave, and Vincent Artero</i>	
14.1	Introduction	385
14.2	Electrode Materials for Hydrogen Evolution	385
14.2.1	Electrode Materials Based on Bio-Inspired Molecular Catalyst	386
14.2.1.1	Entrapment of Catalyst within a Polymeric Material	386
14.2.1.2	Covalent Attachment of Catalyst to Electrode Material	388
14.2.1.3	Noncovalent Attachment of Catalyst to Electrode Material Via $\pi-\pi$ Stacking Interaction	392
14.2.2	Electrode Materials Based on Bio-Inspired All-Inorganic Catalysts	394
14.2.2.1	Metal-Sulfide Catalysts	394
14.2.2.2	Electrode Engineering from Metal-Sulfide Catalysts	395
14.3	Photoelectrode Materials for Hydrogen Evolution	397
14.3.1	All-Inorganic Photocatalysts Composed of Solid-State Semiconductor and Solid Inorganic Catalyst	397
14.3.2	Solid-State Semiconductor and Molecular Catalyst	399
14.3.3	All-Molecular-Based Electrode Materials	400
14.4	Artificial Photosynthetic Systems	401
14.5	Toward Photoelectrode Materials for CO_2 Reduction	404
14.6	Conclusion and Perspective	406
	References	407