

Contents

1	The Thermal Field of the Earth	1
1.1	Hypotheses Concerning the Origin of the Solar System	1
	Throughout History	1
1.1.1	Formation of Star Systems and Planets	3
1.1.2	Temperatures in the Protoplanetary Disks	7
1.1.3	History of Geothermics	14
1.2	Sources of Thermal Energy in the Earth's Interior.	19
1.3	Initial Surface Temperature of the Earth.	26
1.4	Heat Flow from the Sun and Heat Radiation.	28
1.5	Geothermal Gradient	35
1.5.1	Conductivity Contrasts.	36
1.5.2	Effect of Non-uniform Surface Temperature on Temperature Profiles.	39
1.6	Density of Heat Flow.	40
1.7	Regional Patterns of Heat Flow.	41
1.7.1	Seismic Velocity and Heat Production.	46
1.7.2	Changes in Radioactivity with Depth.	48
1.7.3	Heat Flow and Geological Age.	51
1.7.4	Heat Generation and Geological Age.	57
1.7.5	Mantle Heat Flow.	66
1.7.6	Temperature Distribution Inside the Earth	68
1.8	Geothermal Maps	69
	References	75
2	Thermal Properties of Rocks and Density of Fluids	99
2.1	Thermal Conductivity	99
2.2	Thermal Capacity	105
2.3	Thermal Diffusivity	106
2.4	Melting Points of Rocks and Minerals	108
2.5	Effect of Thermal Anisotropy	112
2.6	Effect of Temperature and Pressure on the Thermal Properties of Rocks and Minerals	113

2.7	The Impact of High Pressures and Temperatures on Fluid Density in a Porous Space Within Rocks and Rock Layers	118
2.8	Density of Fluids in the Early Earth Atmosphere	137
	References	142
3	Methods of Thermal Field Measurements	151
3.1	Different Methods of Thermal Field Measurements	151
3.2	The Use of Thermistors and Fiber Optic Temperature Sensors	151
3.2.1	Thermistors	151
3.2.2	Fiber Optic Temperature Sensors	152
3.3	Measurements in Wells	153
3.4	Sea Measurements	154
3.5	Space Infrared Measurements	155
3.6	Near-Surface Thermal Measurements	156
3.7	Measurements in Mines and Tunnels	158
	References	158
4	Temperature Anomalies Associated with Some Natural Phenomena	161
4.1	Thermal Waters, Hot Springs, Geysers and Fumaroles	162
4.1.1	Key Definitions of Hydrogeology and Related Characteristics	163
4.1.2	Thermal Waters	166
4.1.3	Hot Springs, Geysers, Fumaroles	167
4.1.4	Oceanic Vents	182
4.2	Volcanic Eruptions	185
4.3	Mud Volcanoes	201
4.4	Formation of Overpressures and Ultrahigh Pressures in the Earth's Strata	211
	References	224
5	The Thermal Regime of Permafrost Regions	239
5.1	The Temperature of Frozen Rocks	239
5.2	Changes in the Mechanical and Thermal Properties of Formations at Thawing	241
5.3	Thickness and Dynamics of the Permafrost	249
5.4	Results of Long Term Temperature Surveys	252
5.5	Climate Change and the Temperature Regime of Permafrost	255
5.5.1	Forecasting Climate Change and the Permafrost Thickness for Central Yakutia	255

5.5.2	Characteristics of Global Warming in Central Yakutia.	256
5.5.3	Recent Warming of the Permafrost in Alaska.	261
References	266
6	Investigating Deep Lithospheric Structures.	269
6.1	The Formation and Evolution of the Magma-Ocean.	270
6.2	The Early Earth's Atmosphere and the Cooling of the Earth.	275
6.3	The Thermal Regime During Early Lithosphere Formation.	292
6.4	Markers of Thermal Conditions Within the Lithosphere During Its Evolution	296
6.5	Dynamic Interactions of the Asthenosphere and the Lithosphere	318
6.6	Reflecting the Earth's Crust Structure in the Thermal Field	323
6.7	Computing the Curie Discontinuity Depth	331
6.8	Role of the Thermal Regime in Fold Formation in Sedimentary Strata.	337
6.9	The Thermodynamic Regime and Its Influence on Tectonic Processes	344
References	366
7	Interpretation of Thermal Measurements.	393
7.1	Development of a Geothermal Model	396
7.2	Methods of Geothermal Regime Analysis.	404
7.3	Calculation of Horizontal and Vertical Gradients.	418
7.4	Heat Absorption in the Earth's Strata.	426
7.4.1	Formal Theory of Heat Absorption in Layers of Crust.	441
7.5	Quantitative Interpretation of Temperature Anomalies	446
7.5.1	Typical Features of Gravitational, Magnetic and Temperature Anomalies.	446
7.5.2	Brief Description of the Methods Employed for Quantitative Interpretation of Magnetic Anomalies in Complex Conditions	448
7.6	Investigation of Strongly Nonlinear Thermal Sources.	456
7.6.1	Nonlinear Effects in Geophysics and Thermal Processes in the Earth	456
7.6.2	Problem Definition and Discussion	457
7.6.3	Transition Waves and Their Definitions.	458
7.6.4	Some Applications of this Approach	462
7.7	Thermal Anomalies as Precursors of Dangerous Geodynamic Events	463
7.7.1	Mathematical Models of Strongly Nonlinear Geophysical Phenomena	464
7.7.2	Thermal Precursors of Earthquakes	466
References	468

8 Temperature Investigations in the Petroleum Industry	477
8.1 Wellbore and Formation Temperatures During Drilling	477
8.1.1 Heat Exchange in the Wellbore-Formation System	477
8.1.2 Downhole Circulating Mud Temperature	491
8.1.3 Drilling Fluid Densities at High Temperatures and Pressures	507
8.1.4 Hydrostatic Mud Pressure	510
8.1.5 Drilling Through Hydrates	519
8.2 Wellbore and Formation Temperatures During Shut-In	526
8.2.1 Calculating the Downhole Shut-In Temperatures	526
8.2.2 Prediction of Formation Temperatures	530
8.2.3 Temperature Distribution in Formations	536
8.2.4 Calculating the Formation Temperature from BHT Logs	538
8.3 Permafrost Regions	544
8.3.1 Low and High Temperature Permafrost	544
8.3.2 Temperature Distribution and the Radius of Thermal Influence	548
8.3.3 Radius of Thawing Around a Production or Injection Well	549
8.3.4 Time of Complete Freezback	556
8.3.5 Prediction of Formation Temperatures: Field Cases	559
8.4 Cementing of Casing: Cement Heat Generation	570
8.4.1 Strength and Thickening Time of Cement	570
8.4.2 Rate of Heat Generation Versus Time	575
8.4.3 Hydration Test Data and Field Data	578
8.4.4 Temperature Increase at Cement Hydration	580
8.4.5 Size of the Annulus	582
8.4.6 Thermal Properties and Temperature of Formations	585
8.4.7 Radius of Thermal Influence at Cementing	585
References	587
9 Temperature Analyses in Hydrology	593
9.1 The Horner Method and Its Modifications (Permeability and Skin Factor)	595
9.1.1 Effect of Vertical and Horizontal Water Movements on Temperature Profiles	595
9.1.2 Application of the Horner Method	596
9.2 Temperature Profiles in Water Injection and Production Wells	600
9.2.1 Overall Coefficient of Heat Loss	601
9.2.2 Example of a Calculation	603
9.3 Monitoring Water Reserves	604
References	615

10 Near-Surface Temperature Measurements	619
10.1 General Introduction	619
10.2 Calculation of Temporary Variations	622
10.3 Calculation of Terrain Relief Influence	623
10.4 Quantitative Interpretation	624
10.5 Prospecting of Hard Economic Minerals.	625
10.5.1 Surface Measurements	625
10.5.2 Prospecting of Hard Economic Minerals in Mines	628
10.6 Prospecting for Oil and Gas Deposits.	634
10.7 Delineation of Archaeological Features	638
10.7.1 Some Precursors of NSTM.	638
10.7.2 Examples of Quantitative Analysis of Temperature Anomalies Observed Over Archeological Features	640
10.7.3 Temperature Field Modeling by Mathematical Analogy to the Magnetic Field	641
10.8 Mapping Underground Caves	643
10.9 Mapping Karst Terranes	643
10.10 Other Applications	645
10.10.1 Environmental and Engineering Investigations in Deep Tunnels	645
10.10.2 Delineation of a Flowing Landslide	646
10.10.3 Submarine Spring Mapping.	647
10.10.4 Monitoring Metallurgical Slag.	649
10.11 Future Trends in Near-Surface Thermics.	650
References	651
11 Paleoclimate and Present Climate Warming Trends	655
11.1 Glaciations as a Strongly Nonlinear Phenomenon	657
11.2 Studying Recent Paleoclimatic Changes	659
11.2.1 Ground Surface Temperature Histories	659
11.2.2 Introduction to the Problem	661
11.2.3 Climate Reconstruction Methods: Some Typical Disturbances and Restrictions	661
11.2.4 Mathematical Models and Assumptions	663
11.2.5 Example of Calculations	666
11.2.6 Inversion Results	668
11.2.7 Calculation of Warming Rates	670
11.3 Sea Level Changes and Paleoclimate	673
11.3.1 “Heat Island Effect” and Its Influence on Subsurface Temperature	674
11.3.2 Working Equations	674
11.3.3 Example of Calculations	677
11.4 Long and Short Term Monitoring of Subsurface Temperatures in Observational Wells	679

11.4.1 Basic Issues	679
11.4.2 A Simple Method of Temperature and Gradient Evaluation	679
11.4.3 Application of the γ -Function	681
11.4.4 Slider's Method	683
11.4.5 Results of Computations	683
References	690
12 Influence of Temperature Changes to Other Fields	695
12.1 Correlations Between Temperature and Other Physical Parameters	695
12.1.1 Correlations Between Various Geothermal Parameters and Environments	695
12.1.2 Thermal and Density Properties	699
12.1.3 Temperature and Electric Properties	700
12.1.4 Temperature and Seismic Velocities	702
12.1.5 Temperature and Magnetic Properties	704
12.1.6 Temperature and Electromagnetic Properties	704
12.1.7 Temperature and Radon Anomalies	705
12.1.8 Temperature and Induced Polarization	706
12.1.9 Temperature and the Self-Potential Field	706
References	707
13 Integration of Thermal Observations with Other Geophysical Methods	709
13.1 Theoretical Preferences for Integration	709
13.2 Types of Integration Methodologies	710
13.2.1 Conventional Integration	711
13.2.2 Integration on the Basis of Information Theory	712
13.2.3 Multimodel Approach to Geophysical Data Analysis	723
13.3 Case Histories	723
13.3.1 Integrated Geophysical Investigations of Areas of the Saatly Super-Deep Borehole	723
13.3.2 Integrated Thermal-Gravity-VLF Investigations in Ore Geophysics	725
13.3.3 Integrated Thermal-Gravity-Magnetic Investigations in Oil and Gas Geophysics	728
13.3.4 Integrated Delineation of Ring Structures in Israel and the Easternmost Mediterranean	730
References	730

Biographies of the Authors	733
Appendix A: Computing Water Flow Geodynamics in Stratified Liquids	735
Appendix B: Water Production Using the Air-Cooling Method	739
Index	745