

Contents

Contributors' CVs *XIII*

Foreword *XXI*

List of Acronyms *XXIII*

List of Units *XXXI*

1 **Introduction** *1*

Sergio Bertolucci

**Part I Knowledge Management and Technology Transfer
in an Organization** *3*

2 **Knowledge Management: From Theory to Practice** *5*

Beatrice Bressan and Daan Boom

2.1 **Knowledge-Based and Innovative Organization** *5*

2.2 **The Theory of Knowledge** *7*

2.2.1 **Tacit and Explicit Knowledge** *8*

2.2.2 **The SECI Model and the Knowledge Creation
Spiral** *9*

2.2.3 **The Two Dimensions and the Two Spirals of
Knowledge Creation** *11*

2.2.4 **The Five Conditions and the Five Phases in Two
Dimensions** *13*

2.3 **The Core Processes of Managing Knowledge** *18*

2.3.1 **Knowledge Outputs and Outcomes** *19*

2.4 **The Knowledge Worker** *31*

2.4.1 **The Individual Learning Process** *33*

2.4.2 **Scientific, Technological and Social Processes** *36*

2.4.3 **Concept Formation and the Hierarchical Levels
of Conceptualization** *37*

2.5 **The Knowledge Creation, Acquisition, and Transfer Model** *39*

2.6 **Knowledge Management: A Case Study of CERN** *41*

2.6.1 **The LHC Case Study Survey** *47*

Part II Examples of Knowledge and Technology Transfer 57**Section 1 Linking Information 59**

3	WWW and More 61
	<i>Robert Cailliau</i>
3.1	The First Page 62
3.2	Influences on the History of the Web 64
3.2.1	A Matter of Age 64
3.2.2	The Approach 64
3.3	CERN's Role 65
3.3.1	A Possible Definition 65
3.3.2	Making it Work 66
3.3.3	On Documents 66
3.3.4	The Director General 66
3.3.5	Al Gore, the LHC, and the Rest is History 67
3.4	What-if Musings 68
3.4.1	Money, Money, Money . . . 68
3.4.2	And if Not? 69
3.5	The Dark Sides of the Force 70
3.5.1	Techies 70
3.5.2	Global Heating 72
3.5.3	Sin by Omission 72
3.6	Good Stuff 73
3.6.1	Public Domain 73
3.6.2	The Conferences 74
3.6.3	The Consortium 75
3.7	On the Nature of Computing 76
3.7.1	Copy 76
3.7.2	See 77
3.7.3	Understand 77
3.7.4	Remember 77
3.7.5	Interact 78
3.7.6	Share 78
3.7.7	Think 78
3.8	Science 'Un-human' 79
3.9	Lessons to be Learned 80
3.10	Conclusions 80
4	Grid and Cloud 81
	<i>Bob Jones</i>
4.1	Why a Grid? 82
4.2	A Production Infrastructure 85
4.3	Transferring Technology: Grids in Other Science Domains 86

4.4	How CERN Openlab has Contributed to the WLCG Grid	86
4.5	Four Basic Principles	87
4.6	Three-Year Phases	88
4.7	EGEE to EGI Transition	90
4.8	Lessons Learned and Anticipated Evolution	91
4.9	Transferring Technology: Grids in Business	92
4.10	Sharing Resources Through Grids	94
4.11	What are the Hurdles?	94
4.12	Philips Research: Scientific Simulation, Modelling and Data Mining Supports Healthcare	95
4.13	Finance: Stock Analysis Application	95
4.14	Multimedia: GridVideo	96
4.15	Imense: From Laboratory to Market	97
4.16	Total, UK	97
4.17	Seismic Imaging and Reservoir Simulation: CGG Veritas Reaping Benefits from the Grid	98
4.18	Societal Impact	99
5	The 'Touch Screen' Revolution	103
	<i>Bent Stumpe</i>	
5.1	The Birth of a Touch Screen	103
5.2	The Novelty for the Control Room of the CERN SPS Accelerator	106
5.3	A Touch Screen as Replacement for Mechanical Buttons	110
5.4	Attempts at Early Knowledge Transfer	111
5.5	Evolution Turned Into Revolution	113
5.6	Touch Screen and Human Behaviour	115

Section 2 Developing Future 117

6	Solar Thermal Electricity Plants	119
	<i>Cayetano Lopez</i>	
6.1	The Four STE Technologies	120
6.2	Optical Issues in the STE Plant	124
6.2.1	Solar Concentrators	124
6.2.2	Selective and Anti-Reflective Coatings	124
6.2.3	Thermography	128
6.3	Thermodynamic Issues in the STE Plant	131
6.4	Issues in STE Plants Related to Heat Transfer	134
6.5	Thermal Storage of Energy	137
6.6	Fluid Mechanics	138

7	Computers and Aviation	<i>141</i>
	<i>Antony Jameson</i>	
7.1	Computing in Structural and Aerodynamic Analysis	<i>145</i>
7.2	Computer-Aided Design and Manufacturing	<i>149</i>
7.3	Fly-By-Wire and Other On-Board Systems	<i>151</i>
7.4	Airborne Software	<i>154</i>
7.5	Ground-Based Computer Systems	<i>155</i>
7.6	Conclusions	<i>156</i>
8	Antimatter Pushing Boundaries	<i>159</i>
	<i>Niels Madsen</i>	
8.1	Science and the Unknown	<i>159</i>
8.2	Antimatter and CERN	<i>162</i>
8.2.1	Antimatter at the LHC	<i>164</i>
8.2.2	The CERN Antimatter Facility	<i>164</i>
8.3	The Anti-World in Everyday Life	<i>167</i>
8.4	Beyond the Present Day	<i>169</i>
 Section 3 Sustainability and Learning <i>171</i>		
9	Towards a Globally Focussed Earth Simulation Centre	<i>173</i>
	<i>Robert Bishop</i>	
9.1	A String of Disasters	<i>174</i>
9.2	Now is the Time	<i>176</i>
9.3	A Global Synthesis of Knowledge	<i>176</i>
9.4	Modelling and Simulation as a Platform for Collaboration	<i>177</i>
9.5	Advances in High-Performance Computing	<i>178</i>
9.6	Creating Value from Massive Data Pools	<i>179</i>
9.7	Interactive and Immersive 4D Visualizations	<i>180</i>
9.8	Leveraging the Many Layers of Computing	<i>182</i>
9.9	Getting a Complete Picture of the Whole Earth	<i>183</i>
9.10	Influence of the Solar System	<i>184</i>
9.11	Prediction and Uncertainty of Extreme Events	<i>186</i>
9.12	Impact on Cities and Bioregions	<i>189</i>
9.13	Towards Urban Resilience	<i>190</i>
9.14	Modelling the Whole-Earth System: A Challenge Whose Time has Come!	<i>191</i>
10	Radiation Detection in Environment and Classrooms	<i>195</i>
	<i>Michael Campbell</i>	
10.1	The Origins of the Hybrid Pixel Detector	<i>196</i>
10.2	Hybrid Pixel Detectors for High-Energy Physics	<i>197</i>
10.3	Hybrid Pixel Detectors for Imaging: The Medipix Chips	<i>199</i>
10.4	Applications	<i>205</i>

10.4.1	Medical X-Ray Imaging	205
10.4.2	Biology	206
10.4.3	X-Ray Materials Analysis	207
10.4.4	Gas Detector Readout	208
10.4.5	Radiation Monitoring	209
10.4.6	Chemistry	210
10.4.7	Dosimetry in Space	210
10.4.8	Education	211
10.4.9	Art Meets Science	212
10.5	Back to High-Energy Physics	213
10.6	Collaboration, Organization and Serendipity	214

11 Theory for Development 215

Fernando Quevedo

11.1	The Importance of Theoretical Research Through History	216
11.2	Knowledge Management and Science for Peace	219

Part III Economic Aspects of Knowledge Management and Technology Transfer 227

12 Innovation and Big Data 229

Edwin Morley-Fletcher

12.1	The Wealth of Nations: Agriculture, the Division of Labour, or Profits?	230
12.2	Industrialization and/or Exploitation	231
12.3	Perfect Competition, the Disappearance of Profits, Economies of Scale	232
12.4	Creative Destruction	233
12.5	Risk and Uncertainty	235
12.6	Accumulation Without Innovation	236
12.7	The Real Engine of Economic Growth	237
12.8	Endogenous Technological Change	238
12.9	The Appropriate Set of Market and Non-Market Institutions	239
12.10	Limitless Knowledge	241
12.11	Post-Scarcity and Networks	242
12.12	Intellectual Property Rights	244
12.13	Governments' Support of Scientific Research	245
12.14	The Remaining Scarce Resource is Human Creativity	246
12.15	Different Organizational Modes for Overcoming Uncertainty	247
12.16	Information and Allocation Gains of Peer Production	248
12.17	An Ecosystem of Technologies Leading to the Singularity?	250
12.18	Big Data Analytics and Data-Intensive Healthcare	251

13	Universities and Corporations: The Case of Switzerland	255
	<i>Spyros Arvanitis and Martin Woerter</i>	
13.1	Background	255
13.2	KT ^T Activities in the Swiss Economy: The Main Facts from the <i>Firm's Point of View</i>	261
13.2.1	Forms and Partners of KT ^T Activities	262
13.2.2	Technological Fields of KT ^T -Active and R&D-Active Firms	267
13.2.3	Mediating Institutions and Motives for KT ^T Activities	268
13.2.4	Impact of KT ^T Activities as Assessed by the Firms	270
13.2.5	Obstacles to KT ^T Activities	272
13.3	KT ^T Activities in the Swiss Economy: The Main Facts from the <i>Science Institution Point of View</i>	276
13.3.1	Incidence and Forms of KT ^T Activities	276
13.3.2	Mediating Institutions and Obstacles of KT ^T Activities	276
13.4	Analytical Part: Exploration of KT ^T Activities in Switzerland	278
13.4.1	Drivers of KT ^T Activities from the Point of View of the <i>Firm</i>	279
13.4.1.1	Determinants of KT ^T Activities of Firms	280
13.4.1.2	Empirical Evidence	281
13.4.2	KT ^T Activities Determinants from the <i>University Point of View</i>	284
13.4.2.1	Determinants of the Propensity to KT ^T Activities of Universities	286
13.4.2.2	Empirical Evidence	287
13.4.3	Impact of KT ^T Activities on Innovation and Labour Productivity	288
13.4.3.1	Empirical Evidence	290
13.4.4	KT ^T Strategies Determinants and their Impact on Innovation Performance	291
13.4.4.1	Firm Characteristics, KT ^T Strategies, and Innovation Performance	291
13.4.5	Exploration and Exploitation	294
13.4.5.1	Empirical Evidence	297
13.4.6	Technological Proximity Between Firms and Universities and TT	299
13.4.6.1	Empirical Evidence	300
13.5	Conclusion	302
14	Conclusion	307
	<i>Marilena Streit-Bianchi</i>	
Author Index 311		
Index 317		