

SYNOPTIC TABLE OF CONTENTS

Volume 1: Interpretation

NOTES	1
HARRIOT, GALILEO, AND PRECLASSICAL MECHANICS: AN INTRODUCTION	3

PART ONE HARRIOT'S WORK ON MOTION IN CONTEXT

1 THOMAS HARRIOT: PRACTICAL MATHEMATICIAN AND PIONEER OF MODERN SCIENCE	15
2 HARRIOT AND THE CHALLENGE OF PROJECTILE MOTION	25
3 AN INTRODUCTION TO HARRIOT'S MANUSCRIPTS ON MOTION	39

PART TWO MAJOR STRANDS OF HARRIOT'S WORK ON MOTION

4 MATHEMATICAL ANALYSIS OF THE MOTION OF FALL	53
5 FREE FALL EXPERIMENTS AND THEIR EVALUATION: THE "WEIGHT" OF FALLING BODIES	97
SUMMARY OF CHAPTERS 4 AND 5	125
6 FREE FALL EXPERIMENTS AND THEIR EVALUATION: MOTION IN A MEDIUM	133
SUMMARY OF CHAPTER 6	149
7 GRAPHICAL CONSTRUCTION OF PROJECTILE TRAJECTORIES	153
8 EXPLORATION OF THE INCLINED-PLANE CONCEPTION OF PROJECTILE MOTION	175
SUMMARY OF CHAPTERS 7 AND 8	223

PART THREE CONCLUSION

9 SHARED KNOWLEDGE AND ALTERNATIVE SOLUTIONS IN
HARRIOT'S AND GALILEO'S WORK ON MOTION

231

PART FOUR APPENDICES

A A COMMENTED LIST OF HARRIOT'S MANUSCRIPTS ON PROJECTILE MOTION AND THE FALL OF BODIES	245
B A TABLE OF THE FOLIO PAGES BEARING DRAWINGS OF PROJECTILE TRAJECTORIES	353
C WATERMARKS	355
D UNITS USED BY HARRIOT	357
E REPLICATION OF HARRIOT'S EXPERIMENTS ON THE "WEIGHT" OF FALLING BODIES AND THEIR EVALUATION	359
BIBLIOGRAPHY	363
INDEX OF REFERENCES TO THE LITERATURE	375
INDEX LOCORUM	377
INDEX OF NAMES AND SUBJECTS	381

Volume 2: Sources

PART FIVE FACSIMILE AND TRANSCRIPTION

NOTES AND CONVENTIONS	391
THOMAS HARRIOT'S NOTES ON PROJECTILE MOTION AND THE FALL OF BODIES	395
SOURCE INDEX	757

DETAILED TABLE OF CONTENTS

Volume 1: Interpretation

NOTES	1
HARRIOT, GALILEO, AND PRECLASSICAL MECHANICS: AN INTRODUCTION	3

PART ONE HARRIOT'S WORK ON MOTION IN CONTEXT

1 THOMAS HARRIOT: PRACTICAL MATHEMATICIAN AND PIONEER OF MODERN SCIENCE	15
1.1. A Practical Mathematician	15
1.2. A Pioneer of Modern Science	18
1.3. Harriot's Failure to Publish	21
2 HARRIOT AND THE CHALLENGE OF PROJECTILE MOTION	25
2.1. Shared Knowledge on Projectile Motion	26
2.1.1. <i>The Gunners' Questions</i>	26
2.1.2. <i>The Practitioners' Knowledge on the Projectile Trajectory</i>	27
2.1.3. <i>The Aristotelian Conception of Motion</i>	29
2.2. The Problem of the Projectile Trajectory	30
2.2.1. <i>The Encounter of the Practitioners' Knowledge with Aristotelian Physics</i>	30
2.2.2. <i>The Derivation of the Trajectory from Basic Principles of Motion</i>	33
2.2.3. <i>The Continuously Curved Trajectory</i>	34
2.3. The Problem of Fall	36
3 AN INTRODUCTION TO HARRIOT'S MANUSCRIPTS ON MOTION	39
3.1. General Remarks on the Manuscripts	39
3.2. Chronology of the Notes	42
3.2.1. <i>Dating by Contents</i>	42
3.2.2. <i>Dating by Handwriting</i>	42
3.2.3. <i>Dating by Paper</i>	44
3.2.4. <i>Chronological Stages of Harriot's Work on Motion</i>	45
3.3. Harriot's Use of Algebra	46
3.3.1. <i>Notation</i>	47
3.3.2. <i>Procedures</i>	49

PART TWO

MAJOR STRANDS OF HARRIOT'S WORK ON MOTION

4	MATHEMATICAL ANALYSIS OF THE MOTION OF FALL	53
4.1.	<i>Introduction and Survey</i>	53
4.1.1.	<i>The Medieval Doctrine of the Configuration of Qualities and Motions</i>	54
4.1.2.	<i>Oresmian Diagrams and the Motion of Fall in Early Modern Times</i>	56
4.1.3.	<i>Temporal and Spatial Interpretations of Uniformly Difform Motion from the Perspective of Classical Mechanics</i>	57
4.1.4.	<i>The Mean Degree Theorem</i>	59
4.1.5.	<i>Proportions on Uniform Motion</i>	59
4.1.6.	<i>Survey</i>	61
4.2.	<i>Undeveloped Use of Diagrams of Motion</i>	63
4.2.1.	<i>Manuscript Evidence</i>	63
4.2.2.	<i>Describing the Motion of Fall As Uniformly Difform Motion (H-62r)</i>	64
4.2.3.	<i>Investigating the Relation of Time and Space in Uniformly Difform Motion (H-62r, H-30v)</i>	65
4.2.4.	<i>Introducing Trapezium-Shaped Diagrams (H-30v)</i>	67
4.2.5.	<i>Applying the Spatial Interpretation (H-30r)</i>	68
4.2.6.	<i>A Flawed Application of the Mean Degree Theorem (H-30r)</i>	69
4.3.	<i>Examination of the Case of Uniform Motion</i>	70
4.3.1.	<i>Manuscript Evidence</i>	71
4.3.2.	<i>Encountering Contradictions within the Spatial Interpretation (H-51r)</i>	71
4.3.3.	<i>Investigating the Relation of Time, Space, and Degree in Uniform Motion (H-50r, H-54r)</i>	74
4.4.	<i>From Uniform to Uniformly Difform Motion</i>	79
4.4.1.	<i>Manuscript Evidence</i>	79
4.4.2.	<i>Consolidating the Times Squared Law (G-138r)</i>	82
4.4.3.	<i>Comparing Spatial and Temporal Interpretations: Assuming Time To Be Inversely Proportional to Area (F-330r)</i>	83
4.4.4.	<i>Comparing Spatial and Temporal Interpretations: Employing an Approximation by Uniform Motions (F-330r, H-54v, S-7v)</i>	86
4.4.5.	<i>Comparing Spatial and Temporal Interpretations Geometrically (H-22, H-53)</i>	87
4.4.6.	<i>Calculating Time Employing an Equispatial Approximation (G-118v, F-330v, F-328r)</i>	90
4.4.7.	<i>Calculating Time Employing an Equitemporal Approximation (F-324r, F-325r, F-327r, F-329r, F-331r, F-332r, G-121v-G-123v)</i>	91
5	FREE FALL EXPERIMENTS AND THEIR EVALUATION: THE “WEIGHT” OF FALLING BODIES	97
5.1.	<i>Introduction and Survey</i>	97
5.1.1.	<i>Harriot's Use of the Balance as an Instrument to Measure Velocity</i>	97
5.1.2.	<i>Harriot's Experiment from the Perspective of Classical Mechanics</i>	99
5.1.3.	<i>Survey</i>	101

5.2. Experiments on the “Weight” of Falling Bodies	102
5.2.1. <i>Manuscript Evidence</i>	102
5.2.2. <i>The First Experiment on the “Weight” of Falling Bodies (H-76r)</i>	103
5.2.3. <i>Measurement of the Time of Fall for a Given Distance (H-76r)</i>	105
5.2.4. <i>The Second Experiment on the “Weight” of Falling Bodies (H-75r)</i>	106
5.3. Evaluation of the First Experiment	108
5.3.1. <i>Manuscript Evidence</i>	108
5.3.2. <i>Time Proportionality: The Method of Three Degrees (G-126r, G-125v)</i>	110
5.3.3. <i>Time Proportionality: The Method of Equal Distances (G-125v, G-124v)</i>	111
5.3.4. <i>Time Proportionality: The Method of the Empty Triangle (G-126v, G-127v, G-138v, H-53v, H-82r)</i>	113
5.3.5. <i>Space Proportionality (F-333r)</i>	115
5.3.6. <i>The Comparison of the Theoretical Values (H-77r)</i>	116
5.4. Evaluation of the Second Experiment	117
5.4.1. <i>Manuscript Evidence</i>	117
5.4.2. <i>Time Proportionality: The Method of the Empty Triangle (H-78r, H-81, S-1r)</i>	119
5.4.3. <i>Graphical Representation of the Experimental Results (S-1r)</i>	121
5.4.4. <i>The Calculation of Further Quantities on the Basis of the Fall Experiments (G-129v, G-130v, H-78r)</i>	122
SUMMARY OF CHAPTERS 4 AND 5	125
6 FREE FALL EXPERIMENTS AND THEIR EVALUATION: MOTION IN A MEDIUM	133
6.1. Introduction and Survey	133
6.1.1. <i>Fall in a Medium in Classical Physics</i>	133
6.1.2. <i>Harriot’s Conception of Fall in a Medium</i>	135
6.1.3. <i>The Determination of Specific Gravities</i>	138
6.1.4. <i>Survey</i>	139
6.2. Experiments on Motion in Air	140
6.2.1. <i>Manuscript Evidence</i>	140
6.2.2. <i>Measurement of the Distance Different Substances Fall in Equal Times (H-75v)</i>	140
6.2.3. <i>Notes on Ratios of Specific Gravities (H-75)</i>	141
6.3. Evaluation of the Experiments	142
6.3.1. <i>Manuscript Evidence</i>	142
6.3.2. <i>Derivation of a Proportion for the Distances of Fall (G-144v)</i>	143
6.3.3. <i>Derivation of a Proportion for the Specific Gravity of Air (G-144v)</i>	144
6.3.4. <i>Determination of the Specific Gravity of Air (G-144v–146v)</i>	145
6.3.5. <i>Determination of the Distances of Fall for Different Substances in Air (G-147v)</i>	146
6.3.6. <i>Determination of the Distances of Fall for Different Substances in Water (G-148v)</i>	147
SUMMARY OF CHAPTER 6	149

7 GRAPHICAL CONSTRUCTION OF PROJECTILE TRAJECTORIES	153
7.1. Introduction and Survey	153
7.1.1. <i>The Method of Pointwise Construction</i>	153
7.1.2. <i>The Trajectory in Classical Mechanics</i>	154
7.1.3. <i>Survey</i>	155
7.2. Constructions Based on an Arithmetic Law	156
7.2.1. <i>Manuscript Evidence</i>	156
7.2.2. <i>The Identification of a Projectile's Motion in the Vertical Direction with the Motion of Vertical Projection (H-62r)</i>	157
7.2.3. <i>A Theoretically Motivated Construction (H-5r)</i>	158
7.2.4. <i>An Attempt to Adapt the Construction to the Practitioners' Knowledge (H-4r)</i>	161
7.3. Constructions Based on a Quadratic Law	164
7.3.1. <i>Manuscript Evidence</i>	164
7.3.2. <i>Composing the Motion along the Line of the Shot from a Uniform and a Uniformly Difform Motion (H-43r)</i>	165
7.3.3. <i>No New Solution to the Problem of the Dependence on Elevation (H-74r)</i>	167
7.3.4. <i>A Construction Based on the Inclined-Plane Conception of Projectile Motion (G-216v, H-60r)</i>	170
8 EXPLORATION OF THE INCLINED-PLANE CONCEPTION OF PROJECTILE MOTION	175
8.1. Introduction and Survey	175
8.1.1. <i>Compound Diagrams of Motion</i>	175
8.1.2. <i>Survey</i>	176
8.2. Compound Diagrams of Motion and the Time of Flight of a Projectile	177
8.2.1. <i>Manuscript Evidence</i>	177
8.2.2. <i>The Quest for the Range of a Shot (H-26r)</i>	178
8.2.3. <i>The Application of Compound Diagrams to the Problem of Projectile Motion (H-23r)</i>	179
8.2.4. <i>The Derivation of a Proportion for the Time of Flight (H-23r)</i>	180
8.3. Calculation of Ranges and Search for the Angle of Maximum Range	182
8.3.1. <i>Manuscript Evidence</i>	182
8.3.2. <i>The Determination of Ranges (G-158v–G-165v)</i>	183
8.3.3. <i>The Search for the Angle of Maximum Range (G-158v–G-165v)</i>	185
8.3.4. <i>A Candidate for the Angle of Maximum Range (G-150v, G-149v)</i>	187
8.4. Comparison to Empirical Ranges	191
8.4.1. <i>Manuscript Evidence</i>	191
8.4.2. <i>Luys Collado's Ranges (S-11r)</i>	193
8.4.3. <i>William Bourne's Ranges (S-13r, S-3r)</i>	193
8.4.4. <i>Alessandro Capobianco's Ranges (H-36r)</i>	194
8.4.5. <i>The Comparison of the Empirical Ranges (S-12r)</i>	195
8.4.6. <i>The Comparison of Harriot's Ranges to Bourne's (S-3r, S-4r)</i>	196
8.4.7. <i>The Determination of Bourne's Velocities (S-4r)</i>	196
8.4.8. <i>Graphical Representation of Bourne's Velocities (S-6r)</i>	197
8.4.9. <i>The Comparison of Harriot's Ranges to Capobianco's (H-39r, H-36r, S-4r)</i>	198

8.5. The Dependence of the Initial Velocity on the Angle of Elevation	198
8.5.1. <i>Manuscript Evidence</i>	198
8.5.2. <i>The Ellipse as the Line of Velocities (S-2r, S-5r, E-328v)</i>	200
8.5.3. <i>A Physical Derivation of the Line of Velocities (H-73r)</i>	201
8.5.4. <i>Algebraic Treatment of the Problem (H-72r)</i>	202
8.5.5. <i>Calculation of Velocities (H-32r, H-33r)</i>	203
8.5.6. <i>Considering the Recoil (H-72v)</i>	204
8.6. The Proof of the Parabolic Shape of Projectile Trajectories	205
8.6.1. <i>Manuscript Evidence</i>	206
8.6.2. <i>The Doubly Decelerated Motion (G-131r, G-139r, G-139v, H-71v)</i>	207
8.6.3. <i>A Special Proof (H-68r, H-70r)</i>	215
8.6.4. <i>A General Proof (H-69r)</i>	217
8.6.5. <i>Constructed Trajectories (H-63r–H-66r)</i>	219
8.6.6. <i>Horizontal Shots and Shots Below the Horizon (H-67r)</i>	220
SUMMARY OF CHAPTERS 7 AND 8	223

PART THREE CONCLUSION

9 SHARED KNOWLEDGE AND ALTERNATIVE SOLUTIONS IN HARRIOT'S AND GALILEO'S WORK ON MOTION	231
9.1. Common Challenging Objects	232
9.2. Points of Contact with Classical Mechanics	233
9.3. The Shared Knowledge That Defines the Space of Possible Solutions	235
9.4. Individual Pathways through the Shared Knowledge	237
9.5. Harriot and Galileo: The Different Fates of Their Contributions to Mechanics	240

PART FOUR APPENDICES

A A COMMENTED LIST OF HARRIOT'S MANUSCRIPTS ON PROJECTILE MOTION AND THE FALL OF BODIES	245
B A TABLE OF THE FOLIO PAGES BEARING DRAWINGS OF PROJECTILE TRAJECTORIES	353
C WATERMARKS	355
D UNITS USED BY HARRIOT	357
E REPLICATION OF HARRIOT'S EXPERIMENTS ON THE "WEIGHT" OF FALLING BODIES AND THEIR EVALUATION	359
BIBLIOGRAPHY	363
A. Printed Works	363
B. Manuscripts	374

INDEX OF REFERENCES TO THE LITERATURE	375
INDEX LOCORUM	377
INDEX OF NAMES AND SUBJECTS	381

Volume 2: Sources

PART FIVE
FACSIMILE AND TRANSCRIPTION

NOTES AND CONVENTIONS	391
THOMAS HARRIOT'S NOTES ON PROJECTILE MOTION AND THE FALL OF BODIES	395
SOURCE INDEX	757