Contents

Preface — v About the editors — xiii Abbreviations — xvii		
Part I	Introduction and outlook	
Holger	Loewe	
1	Introduction and outlook —— 3	
Part II	Theoretical foundations	
Ferenc	Darvas and Dormán György	
2	Fundamentals of Flow Chemistry —— 9	
2.1	Fundamentals of chemical reactions —— 9	
2.1.1	Thermodynamic requirements for reaction —— 9	
2.1.2	Kinetic requirements for a reaction —— 10	
2.1.3	Reaction order and kinetics —— 12	
2.1.4	Diffusion control —— 13	
2.1.5	Kinetic versus thermodynamic control —— 13	
2.1.6	Competing reactions —— 15	
2.1.7	Initiation and termination of chemical reactions —— 15	
2.1.8	Exotherm and endoterm reactions —— 16	
2.1.9	How to accelerate an organic chemical reaction. Shifting the equilibrium	
	towards product formation —— 16	
2.2	Batch versus flow reactions —— 20	
2.2.1	Performing chemical reactions in batch and flow —— 23	
2.2.2	Multistep reactions in batch and flow —— 26	
2.2.3	The dimensions of batch (flask) and flow (micro) reactors —— 26	
2.2.4	Mixing in batch versus microreactors —— 27	
2.2.5	Mass transfer in batch and flow —— 28	
2.2.6	Temperature control in batch and flow —— 29	
2.2.7	Heterogeneous catalytic reactions in batch and flow —— 32	
2.3	Introduction to the basics of microfluidics —— 34	
2.3.1	Electroosmotic (electrokinetic) flow (EOF) —— 34	
2.3.2	Hydrodynamic (pressure-driven) pumping —— 36	
2.3.3	Segmented flow —— 37	
2.3.4	Centrifugal pumping —— 38	
2.3.5	Laminar and turbulent flow regimes, the Reynolds number —— 38	
2.3.6	Axial dispersion versus radial dispersion (Bodenstein and Peclet	
	Numbers) —— 41	
2 3 7	Mixing versus reaction rate_Damköhler Number //1	

2.3.8

2.3.9

Heat transfer in flow —— 42

Flow rates in microreactors —— 43

2.4	Microreactors in general —— 44
2.4.1	General properties of flow reactors —— 44
2.4.2	Major flow reactor configurations —— 47
2.5	Essentials of reaction planning and realization
	in continuous flow —— 49
2.5.1	Classification of chemical reactions based on reaction kinetics —— 49
2.5.2	Flash chemistry —— 50
2.5.3	High-resolution reaction time control —— 51
2.5.4	Novel process windows —— 52
2.5.5	Process intensification —— 55
Jun-ich	ii Yoshida
3	Principles of controlling reactions in flow chemistry —— 59
3.1	Introduction —— 59
3.2	Reactions in a flow microreactor —— 59
3.2.1	Reaction time in a batch reactor —— 59
3.2.2	Residence time control in a flow reactor —— 60
3.2.3	Why micro? —— 62
3.3	High-resolution reaction time control of reactions in flow —— 68
3.3.1	The principle —— 68
3.3.2	Example 1: Phenyllthiums bearing alkoxycarbonyl groups —— 70
3.3.3	Temperature-residence time map —— 72
3.3.4	Example 2: Control of isomerization. Aryllithiums bearing a nitro
	group 76
3.4	Space integration of reactions —— 77
3.4.1	The concept —— 77
3.4.2	Example 3: Synthesis of disubstituted benzenes from
	dibromobenzene —— 78
3.4.3	Example 4: Synthesis of TAC-101 —— 79
3.4.4	Linear integration and convergent integration —— 80
3.4.5	Example 5: Synthesis of unsymmetrically-substituted photochromic
	diarylethenes. Convergent integration —— 81
3.4.6	Example 6: Integration of lithiation and cross-coupling —— 82
3.4.7	Example 7: Anionic polymerization of styrene and synthesis of block
	copolymers with a silicon core —— 85
3.4.8	Example 8: Anionic block copolymerization of styrene and methyl
	methacrylate —— 88
3.5	Summary —— 89
Melino	la Fekete and Toma Glasnov
4	Technology overview/Overview of the devices —— 95
4.1	General aspects —— 95

Pumps for liquid handling — 96

4.2

4.2.1	Syringe pump —— 96
4.2.2	Piston pump —— 97
4.2.3	Other pumps —— 98
4.3	Mass-flow controllers —— 99
4.4	Heating/cooling of the reaction zone —— 99
4.5	Back-pressure regulators —— 100
4.6	Mixers —— 101
4.6.1	Modular mixers —— 102
4.6.2	In-line mixers —— 103
4.7	Reactors —— 105
4.7.1	Coil reactors —— 106
4.7.2	Chip reactors —— 108
4.7.3	Packed-bed or fixed-bed reactors —— 109
4.8	Miscellaneous techniques —— 112
4.8.1	Tube-in-tube reactor —— 112
4.8.2	Segmented flow biphasic reactions —— 113
4.8.3	Falling film reactors —— 116
4.8.4	Flow microwave reactors —— 117
4.8.5	UV reactors —— 118
4.8.6	Working with supercritical CO ₂ —— 119
4.9	Assembling and using a flow reactor —— 120
4.10	Commercially available systems for the laboratory use —— 123
Patrick F	Plouffe, Arturo Macchi, and Dominique M. Roberge
	From batch to continuous chemical synthesis – a toolbox approach —— 141
5.1	Chemical process development and scale-up challenges —— 141
5.1.1	Batch synthesis: Current profile of the pharmaceutical and
	fine-chemical industry —— 141
5.1.2	Flow chemistry and microreactor technology: a viable
	alternative? —— 142
5.1.3	Modularized process intensification – use the right tool at the right
	place —— 143
5.2	Reaction categories based on rate —— 146
5.2.1	Type A reactions —— 146
5.2.2	Type B reactions —— 146
5.2.3	Type C reactions —— 147
5.3	Reacting phases —— 147
5.3.1	Single phase systems – mix-then-reside —— 147
5.3.2	Liquid-liquid systems – mix-and-reside versus active mixing —— 148
5.3.3	Gas-liquid systems – use of pressure —— 150
5.3.4	Liquid-solid systems —— 150
5.4	Summary —— 150

6.9.1

Part III Lab and teaching practise

Pieter Nieuwland, Kaspar Koch, René Becker, Sándor B. Ötvös, István M. Mándity, and Ferenc Fülöp

6	Experimental procedures for conducting organic reactions in continuous
	flow —— 157
6.1	Flow chemistry calculations —— 157
6.1.1	Reaction and microreactor temperature —— 157
6.1.2	Determination of flow rates —— 157
6.1.3	Example calculation —— 158
6.2	Wittig reaction in a continuous-flow microreactor —— 159
6.2.1	Continuous-flow design —— 159
6.2.2	Basic experiment —— 160
6.2.3	Optimization experiment —— 161
6.3	Swern-Moffatt oxidation in a continuous-flow microreactor —— 163
6.3.1	Continuous-flow design —— 163
6.3.2	Basic experiment —— 164
6.3.3	Optimization experiment —— 166
6.3.4	Optimization experiment on a different substrate —— 167
6.4	Synthesis of silver nanoparticles in a continuous-flow
	microreactor —— 168
6.4.1	Continuous-flow design —— 169
6.4.2	Basic experiment —— 169
6.4.3	Optimization experiment —— 172
6.5	1,2,3-triazole synthesis in continuous flow with copper powder and
	additives —— 172
6.5.1	Continuous-flow design —— 173
6.5.2	Basic experiment —— 174
6.5.3	Optimization experiment —— 174
6.6	Heterogeneous catalytic deuteration with D ₂ O in continuous
	flow —— 176
6.6.1	Continuous-flow design —— 176
6.6.2	Basic experiment —— 177
6.6.3	Optimization experiment —— 178
6.7	Aldol reaction in a continuous-flow microreactor —— 178
6.7.1	Continuous-flow design —— 179
6.7.2	Basic aldol experiment —— 179
6.7.3	Aldol reaction optimization —— 180
6.8	Prilezhaev epoxidation in a continuous-flow microreactor —— 181
6.8.1	Continuous-flow design —— 181
6.8.2	Basic epoxidation experiment —— 182
6.9	Peptide catalyzed stereoselective reactions in a continuous-flow
	reactor —— 184

Continuous-flow design —— 186

6.9.2	Basic aldol experiment —— 186
6.9.3	Reaction optimization —— 187
Robert	K. Harmel, Marielle M. E. Delville, and Floris P. J. T. Rutjes
7	Experimental procedures for conducting organic reactions in continuous
	flow 191
7.1	Pyrrole synthesis by Paal-Knorr cyclocondensation —— 192
7.1.1	Background —— 192
7.1.2	The flow process —— 193
7.1.3	Experimental procedures —— 195
7.2	Diels-Alder Reactions in flow chemistry —— 196
7.2.1	Background —— 196
7.2.2	The flow process —— 196
7.2.3	Experimental procedures —— 199
7.3	Copper-catalyzed azide-alkyne cycloaddition in flow using inductive
	heating —— 200
7.3.1	Background —— 200
7.3.2	The flow process —— 202
7.3.3	Experimental procedures —— 203
7.4	Nef Oxidation of nitroalkanes with KMnO —— 204
7.4.1	Background —— 204
7.4.2	The flow process —— 204
7.4.3	Experimental procedures —— 206
7.5	Suzuki-Miyaura cross-coupling with palladium-catalysts generated in
	flow —— 207
7.5.1	Background —— 207
7.5.2	The flow process —— 208
7.5.3	Experimental procedures —— 210
7.6	Oxidative amidation of aromatic aldehydes —— 211
7.6.1	Background —— 211
7.6.2	The flow process —— 212
7.6.3	Experimental procedures —— 213
7.7	Azide synthesis in flow via diazotransfer —— 215
7.7.1	Background —— 215
7.7.2	The flow process —— 216
7.7.3	Experimental procedures —— 217
7.8	Boronic acid/ester synthesis via lithium halogen exchange in a
	Cryo-Flow Reactor —— 219
7.8.1	Background —— 219
7.8.2	The flow process —— 219
7.8.3	Experimental procedures —— 222
7.9	The Ritter Reaction in Continuous Flow —— 223
7.9.1	Background —— 223

Index —— 291

7.9.2	The flow process —— 224
7.9.3	Experimental procedures —— 225
7.10	Vilsmeier–Haack formylation of electron-rich arenes —— 226
7.10.1	Background —— 226
7.10.2	The flow process —— 227
7.10.3	Experimental procedures —— 230
7.11	Appel reaction using monolithic triphenylphosphine in flow —— 230
7.11.1	Background —— 230
7.11.2	The flow process —— 232
7.11.3	Experimental procedures —— 234
7.12	Schenck ene reaction in flow using singlet oxygen —— 235
7.12.1	Background —— 235
7.12.2	The flow process —— 236
7.12.3	Experimental procedure —— 239
7.13	Chemoenzymatic flow synthesis of cyanohydrins —— 241
7.13.1	Background —— 241
7.13.2	The flow process —— 242
7.13.3	Experimental procedures —— 243
7.14	Summary —— 244
C. Olive	er Kappe
8	The Microwave-to-flow paradigm: translating batch microwave chemistr
	to continuous-flow processes —— 251
8.1	Microwave chemistry —— 251
8.2	Converting microwave to flow chemistry —— 252
8.3	Summary ——- 257
Nichola	is E. Leadbeater, Trevor A. Hamlin
9	Incorporation of continuous-flow processing into the undergraduate
	teaching laboratory: key concepts and two case studies —— 259
9.1	Introduction —— 259
9.2	Equipment —— 260
9.3	Experiments developed for the undergraduate teaching
	laboratory —— 262
9.4	Development of two new experiments for the undergraduate
	laboratory —— 262
9.4.1	The Biginelli Reaction —— 264
9.4.2	The Claisen–Schmidt Reaction —— 269
9.5	Summary —— 273
9.6	Acknowledgements —— 273
A	s to the study questions —— 277