Contents

Preface — v About the editors — xiii Contributing authors — xv Abbreviations — xvii			
Part i	Catalysis and activation		
Clemen	s Brechtelsbauer and King Kuok (Mimi) Hii		
1	Catalysis in flow 3		
1.1	Introduction —— 3		
1.1.1	Flow versus batch chemistry —— 3		
1.1.2	Development of catalytic reactions and flow for organic synthesis —— 3		
1.2	Reactor types, catalytic reactions and productivity —— 5		
1.2.1	Solid-liquid reactors —— 6		
1.2.2	Solid-liquid-gas systems —— 18		
1.3	Conclusion —— 25		
Claude	de Bellefon		
2	Catalytic engineering aspects of flow chemistry —— 31		
2.1	Introduction —— 31		
2.2	Basis of (catalytic) reactor engineering —— 33		
2.2.1	Flow motion in reactors —— 33		
2.2.2	Relevant physics —— 36		
2.2.3	Characteristic times —— 36		
2.2.4	Characteristic lengths —— 38		
2.2.5	Surface area —— 40		
2.2.6	Mixing —— 41		
2.2.7	Heat issues —— 42		
2.3	Describing the chemistry —— 43		
2.3.1	Kinetic rate laws —— 43		
2.3.2	Rate measurement and reaction time —— 45		
2.3.3	Catalyst deactivation —— 47		
2.4	Methodology for Flow reactor dimensioning —— 51		
2.4.1	Batch versus Flow reactor comparison —— 51		
2.4.2	Checking for mass and heat transfer limitations —— 54		
2.4.3	Basis for reactor scale-up —— 59		
2.5	Conclusion —— 61		

Thomas H. Rehm 3 Continuous-flow photochemistry in microstructured environment —— 63 3.1 Environmental impact in view of Green Chemistry ---- 63 3.2 Physical considerations - reasons why microstructured equipment is preferred for flow photochemistry —— 64 Absorption of light by molecules in solution — 64 3.2.1 3.2.2 Role of solvent --- 66 3.2.3 Micrometer-sized structures as key elements of reactor equipment for flow photochemistry — 66 Technological considerations for flow photochemistry ---- 68 3.3 3.3.1 Light sources — 68 Reactor concepts for flow photochemistry — 73 3.3.2 Chemical considerations for flow photochemistry —— 78 3.4 Photochemical reactions without catalyst material —— 78 3.4.1 3.4.2 Heterogeneous flow photocatalysis ---- 80 3.4.3 Flow photocatalysis with organic dyes or noble metal complexes —— 84 3.5 Summary and outlook --- 91 Julian Schuelein and Holger Loewe 4 Electrochemistry in flow ---- 99 4.1 Introduction —— 99 4.2 Electrochemistry in flow ---- 100 Microreactor design ---- 103 4.3 4.3.1 Thin gap cells —— 104 4.3.2 ELMI - microstructured high pressure single pass thin gap flow cell —— 111 4.3.3 Segmented thin gap flow cells ---- 114 4.4 Electrochemistry in microreactors —— 116 4.4.1 Direct product synthesis —— 116 Electrolyte free synthesis —— 117 4.4.2 Activation of chemicals —— 119 4.4.3 Ionic liquids in electrochemistry ---- 122 4.5 Cutting-edge applications in advanced and functional materials Part II L. Zane Miller, Jeremy L. Steinbacher, and D. Tyler McQuade 5 Synthesis of materials in flow – principles and practice —— 133 5.1 Introduction —— 133 5.2 Unique properties of microreactors ---- 133 Mixing —— 133 5.2.1 5.2.2 Thermal and pressure control —— 134

Fluid behavior —— 134

5.2.3

5.3	Synthesis of materials in flow —— 140
5.3.1	Linear polymers —— 140
5.3.2	Beads, disks, and other solid polymeric materials —— 144
5.3.3	Janus materials —— 149
5.3.4	Capsules —— 150
5.3.5	Membranes and fibers —— 152
5.3.6	Nanoparticles and inorganic nonpolymeric materials —— 154
5.4	Conclusions —— 156
Genove	va Filipcsei, Zsolt Otvos, Reka Angi, and Ferenc Darvas
6	Flow chemistry for nanotechnology —— 161
6.1	Introduction to nanotechnology and graphene technology —— 161
6.1.1	Introduction —— 161
6.1.2	Definition and concepts 161
6.1.3	Brief history of nanotechnology —— 162
6.1.4	Why nanotechnology? —— 163
6.1.5	Batch and flow-chemistry based nanonization technologies —— 164
6.1.6	Overview and principles of microfluidic reactors —— 165
6.2	Nanomaterials —— 166
6.2.1	Structure and properties: is the smaller better? —— 166
6.2.2	Organic nanoparticles: biologically active small molecules —— 169
6.2.3	Inorganic nanoparticles: metallic, bimetallic and semiconductor
	particles —— 171
6.2.4	Hybrid nanoparticles —— 172
6.3	Theoretical background of nanoparticle synthesis using flow-chemistry
	based approaches —— 173
6.3.1	Principles of nanoparticle stabilization —— 173
6.3.2	Classical nucleation theory —— 174
6.4	Application of flow technology in nanoparticle synthesis —— 176
6.4.1	Synthesis of metal nanoparticles —— 176
6.4.2	Synthesis of semiconductor nanoparticles —— 177
6.4.3	Synthesis of biologically active organic nanoparticles —— 178
6.5	Impact of nanotechnology: an outlook ——— 182
Samar I	Haroun, Paul C. H. Li
7	Continuous-flow synthesis of carbon-11 radiotracers on a microfluidic
	chip —— 189
7.1	Introduction to continuous-flow microreactors and carbon-11
	radiolabeling —— 189
7.2	Microfluidic synthesis of raclopride —— 192
7.2.1	Microfluidic nonradioactive synthesis of raclopride —— 194
7.2.2	Microchip radioactive synthesis of [11C]raclopride —— 196

7.3	Computational fluid dynamics (CFD) —— 200	
7.3.1	Reaction engineering lab®(REL) module – "ideal" flow-reactor	
	model —— 201	
7.3.2	Microelectromechanical system (MEMS) module –	
	"geometry-dependent" flow study —— 203	
7.4	Conclusion —— 207	
D4 III	Additional Sections of the Many Property to the conduction of the	
Part III	Additional features of the Flow Process: in-line analytics, safety and green	
	principles	
Ferenc	Darvas, György Dormán, and Melinda Fekete	
8	Lab environment: in-line separation, analytics, automation & self	
	optimization —— 213	
8.1	The role of analytics in flow applications —— 213	
8.1.1	Applications of mass spectroscopy —— 214	
8.1.2	ReactIR flow cell —— 218	
8.1.3	Nuclear magnetic resonance (NMR) —— 224	
8.2	Automation and self optimization —— 228	
8.2.1	General description of the self-optimization methods —— 228	
8.2.2	Automation and feedback control systems —— 230	
8.2.3	Nelder–Mead Simplex method —— 234	
8.2.4	Multidimensional optimization —— 235	
8.2.5	Optimization and scale-up —— 236	
8.2.6	Flow reactors with built-in optimization —— 238	
8.3	In-line separation —— 239	
8.3.1	Liquid-liquid separators —— 239	
8.3.2	Scavenger and chromatography columns —— 241	
8.3.3	Simulated moving Bed Chromatography —— 243	
Jean-Christophe Monbaliu, Ana Cukalovic, and Christian V. Stevens		
9	Safety aspects related to microreactor technology —— 253	
9.1	Introduction —— 253	
9.1.1	Chemical processes —— 253	
9.1.2	Safety in chemical processes —— 254	
9.2	Inherently safer processes using microreaction technology —— 254	
9.2.1	Advantages of microreaction technology to safety —— 254	
9.2.2	Recent examples of processes involving dangerous reagents/reactions	
	under MRT conditions —— 258	
9.2.3	MRT processes involving harsh conditions (elevated temperatures	
	and pressures) —— 274	
9.3	Conclusions —— 275	

Volker	Hessel, Qi Wang, and Dana Kralisch
10	From green chemistry principles in flow chemistry towards green flow
	process design in the holistic viewpoint —— 283
10.1	Introduction of Green Chemistry principles —— 283
10.1.1	Green principles —— 283
10.1.2	Green flow chemistry —— 285
10.2	Flow process design and relation to green
	chemistry/engineering —— 285
10.2.1	Flow processing – major means in process intensification —— 285
10.2.2	Transport intensification – the flow-scale —— 286
10.2.3	Chemical intensification – the reactor scale —— 286
10.2.4	Process-design intensification – the full-process scale —— 287
10.2.5	Elemental green criteria with proven impact of flow process
	design —— 287
10.2.6	Elemental green criteria with suspected impact of flow process
	design —— 288
10.2.7	Elemental green criteria with uncertainty over impact of flow process
	design —— 288
10.3	Holistic methodology introduction for systematic green flow process
	design 289
10.4	Green flow process design for fine chemicals/pharmaceuticals —— 293
10.4.1	Technology comparison for green pharmaceutical process
	design —— 293
10.4.2	Flow process design of a green biphasic fine chemical
	synthesis —— 295
10.4.3	Exergetic LCA for improvement of an existing pharmaceutical
	production process —— 297
10.5	Green flow process design for bulk chemicals and benchmark to
	conventional process —— 298
10.5.1	Process simulation —— 299
10.5.2	LCA for continuous flow synthesis of ADA —— 302
10.5.3	LCA for two-step conventional synthesis of ADA —— 303

Answers to the study questions —— 313 Index —— 327

10.5.4

10.5.5

10.6

Complete LCA picture —— 303

Outlook for green flow process design —— 306

Enlightment —— 305