Contents

Preface v			
1	Elementary particles and fields 1		
1.1	Conventions and notations 1		
1.2	Particles and interactions 2		
1.3	Quantum electrodynamics — 9		
1.4	Quantum chromodynamics — 13		
1.5	Bethe-Salpeter equation 16		
1.6	Effective interactions 18		
1.6.1	Preliminaries 18		
1.6.2	The model NJL 20		
2	The standard model — 27		
2.1	The electro-weak theory —— 27		
2.1.1	Feynman rules for the electro-weak interaction —— 40		
2.1.2	Higgs scalar search —— 43		
2.2	Status of the standard model — 44		
2.3	Properties of nonrenormalizable equations, instructive example 49		
3	Bogoliubov compensation 57		
3.1	Origin of the approach 57		
3.2	Application to QFT —— 58		
3.3	A spontaneous generation of the Nambu–Jona-Lasinio		
	interaction 60		
3.4	Justification of the model choice —— 66		
3.5	Compensation equation in a six-dimensional scalar model —— 67		
3.6	Bethe–Salpeter equation and zero excitation — 76		
3.7	Compensation equation for scalar field mass 77		
3.8	Estimate of nonlinearity influence 79		
3.9	Conclusions of simple scalar model — 81		
3.10	Appendix — 83		
4	Three-gluon effective interaction 86		
4.1	Compensation equation —— 86		
4.2	Running coupling 93		
4.3	The gluon condensate —— 97		
4.4	The glueball 99		
4.5	Conclusion — 101		

- 5 Nambu–Jona-Lasinio effective interaction 102
- 5.1 Introduction 102
- 5.2 Effective NJL interaction 102
- 5.3 Scalar and pseudo-scalar states ---- 109
- 5.4 Spontaneous breaking of the chiral symmetry 114
- 5.5 Pion mass and the quark condensate 116
- 5.6 Numerical results and discussion 119
- 5.7 Vector mesons 125
- 5.7.1 Compensation equations for effective form-factors 126
- 5.7.2 Wave functions of vector states 132
- 5.7.3 Results and discussion 138
- 5.8 Necessary formulae 139

6 Three-boson interaction — 141
6.1 Compensation equation for anomalous three-boson interaction — 142

- 6.2 Effective strong interaction in the weak gauge sector 151
- 6.3 Scalar bound state of two W-s 153
- 6.4 Muon g-2 161
- 7 Possible four-fermion interaction of heavy quarks ----- 167
- 7.1 Four-fermion interaction of heavy quarks ----- 167
- 7.2 Doublet bound state $\bar{\Psi}_L T_R 170$
- 7.3 Stability problem 174
- 7.4 Possible effects of the heavy quarks interaction 176

8	Overall conclusion —	- 179
---	----------------------	-------

- 8.1 Short review of achievements of the compensation approach ----- 179
- 8.2 Examples of additional relations in the compensation approach 186
- 8.3 Weinberg mixing angle and the fine structure constant 196
- 8.4 Expectations 201
- 8.5 A possible effective interaction in the general relativity ----- 204
- 8.6 Appendix ----- 209

Bibliography ----- 219

Index ----- 224