Contents

List of Contributors		XIII
Preface	XXI	

1	Directed Evolution of Ligninolytic Oxidoreductases: from Functional
	Expression to Stabilization and Beyond 1
	Eva Garcia-Ruiz, Diana M. Mate, David Gonzalez-Perez, Patricia
	Molina-Espeja, Susana Camarero, Angel T. Martínez, Antonio O.
	Ballesteros, and Miguel Alcalde
1.1	Introduction 1
1.2	Directed Molecular Evolution 1
1.3	The Ligninolytic Enzymatic Consortium 3
1.4	Directed Evolution of Laccases 6
1.4.1	Directed Evolution of Low-Redox Potential Laccases 7
1.4.2	Directed Evolution of Medium-Redox Potential Laccases 7
1.4.3	Directed Evolution of Ligninolytic High-Redox Potential Laccases
	(HRPLs) 8
1.5	Directed Evolution of Peroxidases and Peroxygenases 11
1.6	Saccharomyces cerevisiae Biomolecular Tool Box 15
1.7	Conclusions and Outlook 16
	Acknowledgments 17
	Abbreviations 17
	References 18
2	New Trends in the In Situ Enzymatic Recycling of NAD(P)(H)
	Cofactors 23
	Erica Elisa Ferrandi, Daniela Monti, and Sergio Riva
2.1	Introduction 23
2.2	Recent Advancements in the Enzymatic Methods for the Recycling of
	NAD(P)(H) Coenzymes and Novel Regeneration Systems 24
2.2.1	In Situ Regeneration of Reduced NAD(P)H Cofactors 24
2.2.1.1	Formate Dehydrogenase and Glucose Dehydrogenase 24
2.2.1.2	Phosphite Dehydrogenase 26
2.2.1.3	Hydrogenase 27

vi	Contents	
	2.2.1.4	Glucose 6-Phosphate Dehydrogenase 29
	2.2.1.5	Alcohol Dehydrogenase 29
	2.2.2	In Situ Regeneration of Oxidized NAD(P)+ Cofactors 31
	2.2.2.1	Lactate Dehydrogenase 31
	2.2.2.2	NAD(P)H Oxidase 32
	2.2.2.3	Alcohol Dehydrogenase 34
	2.2.2.4	Mediator-Coupled Enzyme Systems 35
	2.3	Conclusions 37
		Acknowledgments 38
		References 38
	3	Monooxygenase-Catalyzed Redox Cascade Biotransformations 43
		Florian Rudroff and Marko D. Mihovilovic
	3.1	Introduction 43
	3.1.1	Scope of this Chapter 43
	3.1.2	Enzymatic Oxygenation 43
	3.1.3	Effective Cofactor Recycling 44
	3.1.4	In Vitro Multistep Biocatalysis 46
	3.1.5	Combined In Vitro and In Vivo Multistep Biocatalysis 48
	3.1.6	In Vivo Multistep Biocatalysis 51
	3.1.7	Chemo-Enzymatic Cascade Reactions 56
	3.1.8	Conclusion and Outlook 60
		References 61
	4	Biocatalytic Redox Cascades Involving ω-Transaminases 65
		Robert C. Simon, Nina Richter, and Wolfgang Kroutil
	4.1	Introduction 65
	4.2	General Features of ω-Transaminases 66
	4.2.1	Cascades to Shift the Equilibrium for Amination 67
	4.3	Linear Cascade Reactions Involving ω-Transaminases 69
	4.3.1	Redox and Redox-Neutral Cascade Reactions 70
	4.3.2	Carbonyl Amination Followed by Spontaneous Ring Closure 75
	4.3.3	Deracemization of Racemic Amines Employing Two ω-Transaminases 78
	4.3.4	Cascade Reactions of ω-TAs with Lyases and C–C
	4.5.4	Hydrolases/Lipases 80
	4.4	Concluding Remarks 82
	7.4	References 83
	5	Multi-Enzyme Systems and Cascade Reactions Involving Cytochrome P450 Monooxygenases 87

Vlada B. Urlacher and Sebastian Schulz

Cytochrome P450 Monooxygenases 88

General Overview of presented cascade types 91

Multistep Cascade Reactions 87

Introduction 87

5.1

5.1.1 5.1.2

5.1.3

5.2	Physiological Cascade Reactions Involving P450s 92
5.2.1	Multistep Oxidations Catalyzed by a Single P450 92
5.2.2	Multistep Oxidations Catalyzed by Multiple P450s 102
5.3	Artificial Cascade Reactions Involving P450s 108
5.3.1	Cascade Reactions Involving P450s and Cofactor Regenerating Enzymes 108
5.3.1.1	Cofactor Regeneration in Cell-Free Systems (In Vitro) 108
5.3.2	Cofactor Regeneration in Whole-Cell Biocatalysts 114
5.3.3	Artificial Enzyme Cascades Involving P450s and Other Enzymes 115
5.3.3.1	Artificial Multi-Enzyme Cascades with Isolated Enzymes 116
5.3.3.2	Artificial Multi-Enzyme Cascades In Vivo 120
5.4	Conclusions and Outlook 124
	References 125
6	Chemo-Enzymatic Cascade Reactions for the Synthesis of
	Glycoconjugates 133
	Ruben R. Rosencrantz, Bastian Lange, and Lothar Elling
6.1	Introduction 133
6.1.1	Impact of Glycoconjugates and Their Synthesis 133
6.1.2	Biocatalysts for the Synthesis of Glycoconjugates 134
6.1.2.1	Glycosyltransferases 134
6.1.2.2	Glycosidases and Glycosynthases 136
6.1.3	Definition of Cascade Reactions 137
6.2	Sequential Syntheses 139
6.2.1	Nucleotide Sugars 139
6.2.2	Glycoconjugates 141
6.3	One-Pot Syntheses 146
6.3.1	Nucleotide Sugars 146
6.3.2	Glycan Structures 148
6.4	Convergent Syntheses 151
6.5	Conclusion 153
	Acknowledgment 153
	References 153
7	Synergies of Chemistry and Biochemistry for the Production of β-Amino Acids 161
	Josefa María Clemente-Jiménez, Sergio Martínez-Rodríguez, Felipe
71	Rodríguez-Vico, and Francisco Javier Las Heras-Vázquez Introduction 161
7.1	
7.2	Dihydropyrimidinase 163
7.3	N-Carbamoyl-β-Alanine Amidohydrolase 166
7.4	Bienzymatic System for β-Amino Acid Production 173
7.5	Conclusions and Outlook 174
	Acknowledgments 174
	References 174

8	Racemizable Acyl Donors for Enzymatic Dynamic Kinetic
	Resolution 179
	Davide Tessaro
8.1	Introduction 179
8.2	The Tools 180
8.2.1	The Enzymes 180
8.2.2	The Racemization of Acyl Compounds 182
8.3	Applications of DKR to Acyl Compounds 183
8.3.1	Base-Catalyzed Racemization 183
8.3.2	DKR of Oxoesters 185
8.3.3	DKR of Thioesters 188
8.4	Conclusions 193
	Acknowledgments 194
	References 194
9	Stereoselective Hydrolase-Catalyzed Processes in Continuous-Flov
	Mode 199
	Zoltán Boros, Gábor Hornyánszky, József Nagy, and László Poppe
9.1	Introduction 199
9.1.1	General Remarks on Reactions in Continuous-Flow
	Systems 199
9.1.1.1	Stereoselective Reactions in Continuous Flow Systems 202
9.1.1.2	Analytical Applications 203
9.1.2	Nonstereoselective Enzymatic Processes 204
9.2	Enzyme-Catalyzed Stereoselective Reactions in Continuous-Flow
	Systems 204
9.2.1	Stereoselective Processes Catalyzed by Nonhydrolytic
	Enzymes 204
9.2.2	Stereoselective Processes Catalyzed by Hydrolases 207
9.2.2.1	Applicable Types of Selectivities 207
9.2.2.2	Stereoselective Hydrolytic Reactions 207
9.2.2.3	Stereoselective Acylations 211
9.2.2.4	Effects of the Operation Conditions and the Mode of Enzyme
	Immobilization 220
9.3	Outlook and Perspectives 222
	References 222
10	Perspectives on Multienzyme Process Technology 231
	Paloma A. Santacoloma and John M. Woodley
10.1	Introduction 231
10.2	Multienzyme System Classification 233
10.3	Biocatalyst Options 233
10.3.1	Transport Limitations 235
10.3.2	Compartmentalization 237
10.4	Reactor Options 237

	-
10.5	Process Development 239
10.5.1	Recombinant DNA Technology 240
10.5.2	Process Engineering 241
10.6	Process Modeling 241
10.7	Future 244
10.8	Concluding Remarks 245
	References 245
11	Nitrile Converting Enzymes Involved in Natural and Synthetic Cascade
	Reactions 249
	Ludmila Martínková, Andreas Stolz, Fred van Rantwijk, Nicola
11.1	D'Antona, Dean Brady, and Linda G. Otten Introduction 249
11.1	Natural Cascades 250
11.2.1	
11.2.1	- , -
11.2.2	Aldoxime Dehydratase-Nitrile Hydratase-Amidase 255 Other Natural Cascades 256
11.3	Artificial Cascades 257
11.3.1	Nitrile Hydratase—Amidase 257
11.3.2	Nitrilase–Amidase 258
11.3.3	
11.3.4	Hydroxynitrile Lyase–Nitrilase–Amidase 261
11.3.5	Hydroxynitrile Lyase–Nitrile Hydratase 261
11.3.6	Oxygenase–Nitrilase 262
11.3.7	Lipase-Nitrile Hydratase-Amidase 263
11.4	Conclusions and Future Use of These Enzymes 264
	Acknowledgments 265
	References 265
12	Mining Genomes for Nitrilases 271 Ludmila Martínková
12.1	Strategies in Nitrilase Search 271
12.2	Diversity of Nitrilase Sequences 272
12.2.1	Nitrilases in Bacteria 274
12.2.2	Nitrilases in Fungi 274
12.2.3	Nitrilases in Plants 275
12.3	Structure-Function Relationships 275
12.3.1	Sequence Clustering 275
12.3.2	Analysis of Specific Regions 276
12.3.3	Analysis of Enzyme Mutants 276
12.4	Enzyme Properties and Applications 277
12.4.1	Arylacetonitrilases 277
12.4.2	Aromatic Nitrilases 278
12.4.3	Aliphatic Nitrilases 278
12.4.4	Cyanide-Transforming Enzymes 279

x	Contents	
	12.5	Conclusions 279 Acknowledgment 279 References 280
	13	Key-Study on the Kinetic Aspects of the In Situ NHase/AMase Cascade System of M. imperiale Resting Cells for Nitrile Bioconversion 283 Laura Cantarella, Fabrizia Pasquarelli, Agata Spera, Ludmila Martínková, and Maria Cantarella
	13.1	Introduction 283
	13.2	The Temperature Effect on the NHase–Amidase Bi-Enzymatic Cascade System 284
	13.3	Effect of Nitrile Concentration on NHase Activity and Stability 287
	13.4	Effect of Nitrile on the AMase Activity and Stability 289
	13.5	Concluding Remarks 293
		Acknowledgments 293
		References 293
	14	Enzymatic Stereoselective Synthesis of β-Amino Acids 297 Varsha Chhiba, Moira Bode, Kgama Mathiba, and Dean Brady
	14.1	Introduction 297
	14.2	Preparation of β-Amino Acids 298
	14.2.1	Chemical Methods for Generating β-Amino Acids 298
	14.2.2	Biocatalytic Preparation of Enantiopure β-Amino Acids 299
	14.2.2.1	Lipases and Aminoacylases 299
	14.2.2.2	Transaminases 300
	14.2.2.3	Nitrile Converting Biocatalysts 300
	14.3	Nitrile Hydrolysis Enzymes 301
	14.3.1	Nitrilase 301
	14.3.1.1	Nitrilase Structure and Mechanism 301
	14.3.1.2	Nitrilase Substrate Selectivity 302
	14.3.2	Nitrile Hydratase 302
	14.3.2.1	Nitrile Hydratase Structure and Mechanism 303
	14.3.3	Amidases 304
	14.3.3.1	Amidase Structure and Mechanism 304
	14.3.4	Nitrile Hydratase and Amidase Cascade Substrate Selectivity 304
	14.4	Conclusion 308
		Acknowledgments 309
		References 309

New Applications of Transketolase: Cascade Reactions for Assay 15 Development 315 Laurence Hecquet, Wolf-Dieter Fessner, Virgil Hélaine, and Franck

Charmantray

15.1 Introduction 315

15.2 Cascade Reactions for Assaying Transketolase Activity In Vitro 317

15.2.1	Coupling with Other Enzymes as Auxiliary Agents 317
15.2.1.1	Coupling with NAD(H)-Dependent Dehydrogenases 317
15.2.1.2	Coupling with Bovine Serum Albumin 319
15.2.1.3	Coupling with BSA and Polyphenol Oxidase 321
15.2.2	Coupling with a Nonprotein Auxiliary Agent 325
15.2.2.1	Chemoenzymatic Cascade Reaction Based on Redox
	Chromophore 325
15.2.2.2	Phenol Red as pH Indicator 326
15.3	Cascade Reactions for Assaying, Transketolase Activity by In Vivo
	Selection 329
15.3.1	Biocatalyzed Synthesis of Probes 16a,b 330
15.3.2	In Vitro Studies with Wild-Type TK and Probes 16a,b by LC/MS 330
15.3.3	Detection of TK Activity in E. coli Auxotrophs from Amino Acid
	Precursors 331
15.4	Conclusion 334
13.1	References 335
	Notice 355
16	Aldolases as Catalyst for the Synthesis of Carbohydrates and
	Analogs 339
	Pere Clapés, Jesús Joglar, and Jordi Bujons
16.1	Introduction 339
16.2	Iminocyclitol and Aminocyclitol Synthesis 340
16.3	Carbohydrates and Other Polyhydroxylated Compounds 351
16.4	Conclusions 355
	Acknowledgments 356
	References 356
17	Enzymatic Generation of Sialoconjugate Diversity 361
	Wolf-Dieter Fessner, Ning He, Dong Yi, Peter Unruh, and Marion Knorst
17.1	Introduction 361
17.2	A Generic Strategy for the Synthesis of Sialoconjugate Libraries 363
17.2.1	Synthesis of Sialic Acid Diversity 368
17.2.1.1	Neuraminic Acid Aldolase 368
17.2.1.2	Neuraminic Acid Synthase 371
17.2.2	Nucleotide Activation of Sialic Acids 372
17.2.2.1	Kinetics of Sialic Acid Activation 373
17.2.2.2	Substrate Binding Model 373
17.2.2.3	Engineering of Promiscuous CSS Variants 376
17.2.3	Sialic Acid Transfer 377
17.3	Cascade Synthesis of neo-Sialoconjugates 378
17.3.1	Choice of Sialyl Acceptor 378
17.3.2	One-Pot Two-Step Cascade Reactions 379
17.3.3	One-Pot Three-Step Cascade Reactions 383
17.3.4	Metabolic Diversification 385
17.3.5	Post-Synthetic Diversification 386

XII	Contents	
•	17.3.6	Biomedical Applications of Sialoconjugate Arrays 388
	17.4	Conclusions 388
		Acknowledgments 389
		References 389
	18	Methyltransferases in Biocatalysis 393
		Ludger Wessjohann, Martin Dippe, Martin Tengg, and Mandana
		Gruber-Khadjawi
	18.1	Introduction 393
	18.2	SAM-Dependent Methyltransferases 395
	18.2.1	Substrates 396
	18.2.2	Cofactors 400
	18.2.3	Higher Homologs and Derivatives of SAM 403
	18.2.4	Cofactor (Re)Generation 406
	18.2.5	Cascade Applications 410
	18.3	Conclusion and Outlook 415
		Abbreviations 417
		Acknowledgement 417
		References 418
	19	Chemoenzymatic Multistep One-Pot Processes 427
		Harald Gröger and Werner Hummel
	19.1	Introduction: Why Chemoenzymatic Cascades and Why One-Pot
		Processes? 427
	19.2	Concepts of Chemoenzymatic Processes 427
	19.3	Combination of Substrate Isomerization and their Derivatization with
		Chemo- and Biocatalysts Resulting in Dynamic Kinetic Resolutions
		and Related Processes 429
	19.4	Combination of Substrate Synthesis (Without Isomerization) and
		Derivatization Step(s) 438
	19.4.1	One-Pot Processes with an Initial Biocatalytic Step, Followed by
		Chemocatalysis or a Noncatalyzed Chemical Process 439
	19.4.2	One-Pot Process with an Initial Chemo Process, Followed by
		Biocatalysis 443
	19.4.2.1	Combination of Noncatalyzed Organic Reactions and
		Biocatalysis 443

Combination of Metal Catalysis and Biocatalysis 445

Combination of Organocatalysis and Biocatalysis 449

Index 457

References 453

Conclusion and Outlook 453

19.4.2.2

19.4.2.3

19.5