Contents

1

List of Contributors XV Foreword XIX Introduction XXIX Part I Mechanisms of Elementary Reactions in Catalytic Processes 1 Lutz H. Gade **Quantum Dynamics of Molecular Elementary Processes in Catalytic** Transformations 5 Günter Klatt and Horst Köppel 1.1 Introduction 5 1.2 Structural and Energetic Aspects 6 1.3 Quantum Dynamical Calculations 12 1.3.1 Reaction Path Energy Profiles 12 1.3.2 Wave Packet Propagation for Late-Transition-Metal Complexes 13 1.3.3 Norm Decay and Lifetimes 15 1.3.4 Quantum Dynamics of Ethylene Insertion in Chromium Complexes 18 1.4 Summary and Outlook 21 Acknowledgments 21 References 21 2 Activation of Small Molecules with Metal and Metal Oxide Clusters in Inert Gas Matrixes 25 Hans-Jöra Himmel and Olaf Hübner 2.1 Introduction 25 2.2 The Matrix Isolation Technique – Advantages and Limitations 28 2.2.1 Thermal Evaporation Versus Laser Ablation - 29 Metal or CsI Substrates for the Matrix 30 2.2.2 2.3 Formation and Characterization of Metal Atom Dimers and Clusters 32 2.4 Reactions of Atom Dimers or Clusters 35

٧

vi	Contents	
	2.5	Formation and Characterization of Metal Oxides 38
	2.6	Reactions Involving Metal Oxides 44
	2.7	Concluding Remarks 46
		Acknowledgments 47
		References 47
	3	Toward Single-Molecule Catalysis 53
		Arina Rybina, Marcel Wirtz, Dominik Brox, Roland Krämer, Gregor Jung, and
		Dirk-Peter Herten
	3.1	Introduction 53
	3.1.1	Single-Molecule Enzymology 54
	3.1.2	Single-Molecule Studies in Chemistry 55
	3.1.2.1	Single-Molecule Studies in Heterogeneous Catalysis 56
	3.1.2.2	Single-Molecule Chemistry in Homogeneous Catalysis 58
	3.2	Probes for Single-Molecule Chemistry 60
	3.2.1	Fluorescence Properties: Overall Considerations 61
	3.2.2	Fluorogenic Substrates 62
	3.2.3	Substrates for Reversible Reactions 62
	3.2.4	Substrates for Irreversible Reactions 63
	3.3	Approaching Single-Molecule Studies in Homogeneous
	3.3.1	Catalysis 64 Elyeppenders Labeled Cu(II) Chalaters and Substrates 64
	3.3.2	Fluorophore-Labeled Cu(II) Chelators and Substrates 64 BODIPY Substrates for Probing Reactions of Double Bonds 71
	3.3.2 3.4	Discussion and Perspectives 75
	5.4	Acknowledgments 76
		References 76
	4	Intermediates and Elementary Reactions in Gold Catalysis 81
		A. Stephen K. Hashmi
	4.1	Introduction 81
	4.2	The Initial Step: π -Coordination of the Substrate 81
	4.3	The Nucleophilic Addition: Vinylgold and Alkylgold
		Intermediates 82
	4.4	The Reaction of the Organogold Intermediates with
		Electrophiles 87
	4.5	"Vinylidene" Gold(I) Intermediates 89
	4.5.1	Setting the Stage 89
	4.5.2	An Unexpected Regioselectivity Raises Questions 92
	4.5.3	The Mechanistic Hypothesis 95
	4.5.4	The Other Pathway 97
	4.5.5	Gold Allenylidenes as Analogs of Gold Vinylidenes? 99
	4.5.6	Dual Activation Catalysts 99
	4.6	Protons and Hydride in Gold Catalysis 101
	4.7	Future Perspectives 102
		References 102

5	Diastereoselectivity in Alkene Metathesis 107 Bernd F. Straub and Achim Häußermann
5.1	Introduction 107
5.2	Stereoselective Alkene Metathesis Catalysts 107
5.3	Combining Catalytic Activity and Stereoselectivity in Ruthenium
	Carbenes: an Antagonism? 111
5.4	Stereoselectivity in Ring-Opening Metathesis Polymerization
	(ROMP) 114
5.5	Outlook 116
5.6	Summary 117
	References 117
Part II	New Catalysts – New and Old Reactions 119
	Peter Hafmann
6	Oxidation Catalysis with High-Valent Nonheme Iron Complexes 123 Peter Comba
6.1	Introduction 123
6.2	Bispidine Ligands 124
6.3	Oxidation of the Ferrous Precursors 125
6.4	Spin States of the Ferryl Catalysts 128
6.5	Redox Properties of the Ferryl Oxidants 130
6.6	Reactivity of the Ferryl Compounds 132
6.6.1	Olefine Oxidation 132
6.6.2	Alkane Oxidation 134
6.6.3	Sulfoxidation 137
6.6.4	Water Oxidation 138
6.6.5	Dioxygen as Oxidant 139
6.7	Conclusion 140
	Acknowledgment 141
	References 141
7	Single-Site Organochromium Catalysts for High Molecular Weight
	Polyolefins 147
	Markus Enders
7.1	Introduction 147
7.2	Ligand Design 148
7.3	Chromium Complexes of Non-Cp Ligands 149
7.3.1	Neutral Tridentate Ligands 149
7.3.2	Anionic Ligands 149
7.4	Chromium Complexes Based on Cp 150
7.4.1	Cp Systems with Covalently Bound Additional Donor
76	Functions 151
7.5	Polymerization Behavior of Donor-Functionalized Cp Chromium
	Complexes Developed in Heidelberg 151

VIII	Contents	
	7.5.1	Structural Features 151
	7.5.2	Catalyst Activation and Catalytic Activities 152
	7.5.3	Chain Termination and Molecular Weights 155
	7.6	En Route to Tunable Catalysts 157
	7.7	Conclusion 158
		References 159
	8	Ligand Design and Mechanistic Studies for Ni-Catalyzed
		Hydrocyanation and 2-Methyl-3-Butenenitrile Isomerization Based
		upon Rh-Hydroformylation Research 161
		Peter Hofmann and Michael E. Tauchert
	8.1	Introduction 161
	8.2	Recent Advances in Ni-Catalyzed Hydrocyanation and Isomerization
		Reactions 164
	8.2.1	Hydrocyanation of Vinylarenes 165
	8.2.2	Hydrocyanation of 1,3-Dienes 165
	8.2.3	Hydrocyanation of <i>trans</i> -3-Pentenenitrile 166
	8.2.4	Isomerization of 2-Methyl-3-Butenenitrile 167
	8.3	Recent Advances in Ni-Catalyzed Hydrocyanation and Isomerization
	0.0.1	Reactions Employing the TTP-Ligand Family 168
	8.3.1	Genesis of the TTP-Ligand Family 168
	8.3.2	Ni-Catalyzed Isomerization and Hydrocyanation with TTP-Type
		Phosphonite Ligands 170
	8.3.3	Ni-Catalyzed Hydrocyanation Involving TTP-Type Phosphine Ligands 171
	8.3.4	Applications and Mechanistic Studies of TTP-Type Phosphine
		Ligands in Ni-Catalyzed 2M3BN Isomerization 174
		Acknowledgments 179
		References 179
	9	Strongly Electron Donating Tridentate N-Heterocyclic Biscarbene
		Ligands for Rhodium and Iridium Catalysts 183
		Doris Kunz and Eva Jürgens
	9.1	Introduction 183
	9.2	Ligand Systems 184
	9.3	Synthesis and Reactivity of the Complexes 186
	9.3.1	Synthesis of M(I) Complexes 186
	9.3.2	Synthesis of M(III) Complexes 190
	9.4	Catalytic Activities of the Rh Complexes 194
	9.5	Catalytic Activities of the Ir Complexes 200
	9.6	Discussion 202
	9.7	Summary, Conclusion, and Outlook 203
		References 204

10	NHCP Ligands for Catalysis 207 Peter Hofmann and Marcel Brill
10.1	Introduction 207
10.1	Recent Advances in Catalysis with NHCP Ligands 208
10.2.1	Cross-Coupling Catalysis and Related Reactions 208
10.2.2	Miscellaneous Reactions 214
10.2.2	Recent Advances in Asymmetric Catalysis with Chiral NHCP
10.5	Ligands 216
10.4	Recent Advances in NHCP Chemistry Featuring Bulky,
	Electron-Rich, Small-Bite-Angle Ligands 221
10.4.1	Ligand Synthesis of <i>N</i> -Phosphino- and <i>N</i> -Phosphinomethyl NHCs 222
10.4.2	N-Phosphino-NHC Transition-Metal Complexes 224
10.4.3	N-Phosphinomethyl-NHC Ruthenium Alkylidene Complexes 227
	References 229
Part III	Catalysts in Synthesis 235
	Günter Helmchen
11	Ir-Catalyzed Asymmetric Allylic Substitution Reactions ~
	Fundamentals and Applications in Natural Products Synthesis 239
	Günter Helmchen
11.1	Introduction 239
11.2	Background on Reaction Mechanism 240
11.3	Dibenzocyclooctatetraene (dbcot) as Ancillary Ligand 242
11.4	Applications in Organic Synthesis 244
11.4.1	Allylic Substitution in Combination with Ring Closing
	Metathesis 245
11.4.2	Domino-Hydroformylation – Cyclization
	(Hydroaminomethylation) 247
11.4.3	The Allylic Substitution in Combination with the Suzuki-Miyaura
	Reaction 248
11.4.4	Reactions of Enines Derived from Allylic Substitution Products 250
11.5	Conclusions 250
	Acknowledgments 251
	References 251
12	Sequential Catalysis Involving Metal-Catalyzed Cycloisomerizations
	and Cyclizations 255
	Thomas J. J. Müller
12.1	Introduction 255
12.2	Sequences Initiated by Cycloisomerizations 256
12.2.1	Sequentially Pd-Catalyzed Sequences Initiated by
	Cycloisomerizations 256

x	Contents
---	----------

12.2.2	Sequentially Rh-Catalyzed Sequences Initiated by Cycloisomerizations 259
12.3	Sequences Initiated by Ring-Closing Olefin Metathesis 262
12.3	Ring-Closing Metathesis – Isomerization Sequences 263
12.3.2	Ring-Closing Metathesis – Oxidation Sequences 267
12.4	Sequences Initiated by Alkynylation and Carbopalladative Insertions 268
12.5	Sequences Intercepted by Cyclizations 271
12.6	Conclusion 276
	Acknowledgment 276
	Abbreviations 276
	References 277
13	C-N-Coupling Reactions in Catalytic One-Pot Syntheses Using
	Molecular Group 4 Catalysts 281
	Lutz H. Gade and Solveig A. Scholl
13.1	Introduction 281
13.2	Group 4 Metal Catalysts for the Hydroamination and
10.2	Hydrohydrazination of $C-C$ Multiple Bonds as well as Complex
	Reaction Sequences Based Thereon 281
13.3	Case Histories 283
13.3.1	Highly Active Titanium Catalysts for the Hydrohydrazination of
	Terminal Alkynes and Aminoguanylation of Carbodiimides 286
13.3.2	A Zirconium-Catalyzed Non-Fischer-Type Pathway to Indoles 287
	References 294
14	Sequential Catalysis for the Stereoselective Synthesis of Complex
	Polyketides 299
	Thomas Debnar and Dirk Menche
14.1	Complex Polyketides 299
14.2	Domino Nucleophilic Addition – Tsuji – Trost Reaction 301
14.2.1	Concise Synthesis of Tetrahydropyrans by a Tandem
	oxa-Michael–Tsuji–Trost Reaction 301
14.2.2	Concise Synthesis of Acetal-Protected 1,3-syn-Diols by a Tandem
	Hemiacetal/Tsuji – Trost Reaction 304
14.2.3	General Concept and Further Applications for Diamine and
_	Aminoalcohol Synthesis 306
14.3	Sequential Divne Cyclization and Regioselective Opening of
	Zirconacyclopentadienes 308
14.4	Conclusion and Perspectives 311
17.7	References 312

15	Modular Assembly of Chiral Catalysts with Polydentate
	Stereodirecting Ligands 313
	Lutz H. Gade
15.1	Introduction 313
15.2	A Modular Synthesis of C_3 - and C_1 -Chiral
	1,1,1-Tris(oxazolyl)ethanes ("Trisox") 314
15.2.1	C ₃ -Chirality in Polymerization Catalysis with Rare-Earth
	Complexes 316
15.2.2	Trisox as a Bidentate Ligand: Chiral Trisoxazolines in Copper(II)
	Lewis Acid Catalysis and Palladium-Catalyzed Asymmetric Allylic
	Substitutions 318
15.3	The Boxmi Pincer System: a Highly Efficient Modular Stereodirecting
	Ligand for a Broad Range of Catalytic Reactions 322
15.4	Bidentate N-Heterocyclic Carbene Ligands Incorporating Oxazoline
	Units 327
15.5	New Modular Di- and Tridentate Phospholane Ligands 332
15.5.1	Cyclohydroaminations of γ-Allenyl Sulfonamides with Mono-, Bis-,
	and Trisphospholane Gold(I) Catalysts 335
	References 337
Part IV	Structures and Mechanisms in Biological Systems 343
	Andres Jäschke
16	Beating and Employing X-Ray-Induced Radiation Damage in Structural
16	Beating and Employing X-Ray-Induced Radiation Damage in Structural Studies of Hemoproteins 347
16	Studies of Hemoproteins 347
	Studies of Hemoproteins 347 Ilme Schlichting
16.1	Studies of Hemoproteins 347 Ilme Schlichting Introduction 347
16.1 16.2	Studies of Hemoproteins 347 Ilme Schlichting Introduction 347 Cytochrome P450 Enzymes 348
16.1 16.2 16.2.1	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348
16.1 16.2 16.2.1 16.2.2	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350
16.1 16.2 16.2.1	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353
16.1 16.2 16.2.1 16.2.2 16.3	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353
16.1 16.2 16.2.1 16.2.2 16.3	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354
16.1 16.2 16.2.1 16.2.2 16.3	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354References355The Catalytic Strategy of P-O Bond-Cleaving Enzymes: Comparing
16.1 16.2 16.2.1 16.2.2 16.3 16.4	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354References355The Catalytic Strategy of P-O Bond-Cleaving Enzymes: ComparingEcoRV and Myosin359
16.1 16.2 16.2.1 16.2.2 16.3 16.4	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354References355The Catalytic Strategy of P-O Bond-Cleaving Enzymes: ComparingEcoRV and Myosin359Faroog Ahmad Kiani and Stefan Fischer
16.1 16.2 16.2.1 16.2.2 16.3 16.4	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354References355The Catalytic Strategy of P-O Bond-Cleaving Enzymes: ComparingEcoRV and Myosin359
16.1 16.2 16.2.1 16.2.2 16.3 16.4	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354References355The Catalytic Strategy of P-O Bond-Cleaving Enzymes: ComparingEcoRV and Myosin359Farooq Ahmad Kiani and Stefan FischerIntroduction359How Do Enzymes Achieve Catalysis?359
16.1 16.2 16.2.1 16.2.2 16.3 16.4 17 17.1	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354References355The Catalytic Strategy of P–O Bond-Cleaving Enzymes: ComparingEcoRV and Myosin359Farooq Ahmad Kiani and Stefan FischerIntroduction359How Do Enzymes Achieve Catalysis?359Computational Investigation of Enzymatic Mechanisms361
16.1 16.2 16.2.1 16.2.2 16.3 16.4 17 17.1 17.1	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354References355The Catalytic Strategy of P-O Bond-Cleaving Enzymes: ComparingEcoRV and Myosin359Farooq Ahmad Kiani and Stefan FischerIntroduction359How Do Enzymes Achieve Catalysis?359Computational Investigation of Enzymatic Mechanisms361Enzymes that Catalyze Reactions Involving Phosphate362
16.1 16.2 16.2.1 16.2.2 16.3 16.4 17 17.1 17.1.1 17.1.1 17.1.2	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354References355The Catalytic Strategy of P-O Bond-Cleaving Enzymes: ComparingEcoRV and Myosin359Farooq Ahmad Kiani and Stefan FischerIntroduction359How Do Enzymes Achieve Catalysis?359Computational Investigation of Enzymatic Mechanisms361Enzymes that Catalyze Reactions Involving Phosphate362Endonuclease Enzymes363
16.1 16.2 16.2.1 16.2.2 16.3 16.4 17 17.1 17.1.1 17.1.1 17.1.2 17.1.3	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354References355The Catalytic Strategy of P-O Bond-Cleaving Enzymes: ComparingEcoRV and Myosin359Farooq Ahmad Kiani and Stefan FischerIntroduction359How Do Enzymes Achieve Catalysis?359Computational Investigation of Enzymatic Mechanisms361Enzymes that Catalyze Reactions Involving Phosphate362
16.1 16.2 16.2.1 16.2.2 16.3 16.4 17 17.1 17.1.1 17.1.2 17.1.3 17.1.4	Studies of Hemoproteins347Ilme SchlichtingIntroduction347Cytochrome P450 Enzymes348The Reaction Cycle of P450 _{cam} at High Structural Resolution348Chloroperoxidase Compound350Photoelectrons – Friend and Foe353X-ray Free-Electron Lasers354References355The Catalytic Strategy of P-O Bond-Cleaving Enzymes: ComparingEcoRV and Myosin359Farooq Ahmad Kiani and Stefan FischerIntroduction359How Do Enzymes Achieve Catalysis?359Computational Investigation of Enzymatic Mechanisms361Enzymes that Catalyze Reactions Involving Phosphate362Endonuclease Enzymes363

xII	Contents	
•	17.3	Conclusions 369
	17.4	Methods 373
		References 373
	18	Selective Hybrid Catalysts Based on Nucleic Acids 377 Andres Jäschke
	18.1	Introduction 377
	18.2	Hybrid Catalysis 378
	18.3	DNA-Based Hybrid Catalysis 378
	18.4	Organometallic Chemistry with Nucleic Acids 380
	18.5	Combinatorial Selections of Catalysts from Nucleic Acid Libraries 381
	18.6	Site-Specific Internal Functionalization of Nucleic Acids with Transition-Metal Ligands and Other Moieties 382
	18.7	Metallation of DNA – Ligand Conjugates 385
	18.8	Site-Specific Terminal Functionalization of Nucleic Acids with Substrates 385
	18.9	Allylic Aminations by DNA-Based Hybrid Catalysts 387
	18.10	Summary and Outlook 389 References 390
	Part V	Studies of Immobilized Catalysts – Introduction 393 Oliver Trapp and Johannes Troendlin
	V.1	Introduction 393
	V.2	Covalent Immobilization of Catalysts 394
	V.2 V.3	Support Materials 395
	V.4	Examples of Immobilized Catalyst Systems 397
	19	Dendrimers as Platforms for Stereoselective Catalysis 407 Lutz H. Gade
	19.1	Introduction 407
	19.2	Fixation of Chiral Catalysts on Dendrimers and Hyperbranched Polymers 407
	19.3	Case Histories 408
	19.3.1	"Dendritic Effects" Observed for Immobilized Pyrphos-Based
		Hydrogenation Catalysts 409
	19.3.2	BINAP – Copper(I) Hydrosilylation with Functionalized PPI and PAMAM Dendrimers as well as Hyperbranched Polymers 414
	19.3.3	"Catalysis in a Tea Bag" with Dendrimer-Immobilized Bis- and Trisoxazoline Copper Catalysts 416
	19.4	Conclusion and Outlook 419 References 420

.

20	Solid Phases as Protective Environments for Biomimetic Catalysts 423 Katja Heinze
20.1	Introduction 423
20.2	Site Isolation Experienced by Matrix-Bound Transition-Metal Complexes 424
20.3	Immobilized Structural and Spectroscopic Active Site Models 428
20.4	Elementary Reaction Steps Performed by Solid-Phase Supported Complexes 437
20.5	Immobilized Functional Active Site Models 437
20.6	Final Remarks 446
	Abbreviations 447
	References 448
21	High-Throughput Screening of Catalysts and Reactions 453 Oliver Trapp
21.1	Introduction 453
21.2	Technical Requirements for On-Column Reaction
	Chromatography 457
21.2.1	Experimental Setups of On-Column Reaction Chromatography 457
21.2.2	Preparation of Capillary Reactors 459
21.2.3	High-Throughput Approach 459
21.3	Determination of Kinetic Data 460
21.3.1	Classical Reaction Kinetics for On-Column Reaction
	Chromatographic Experiments with Reaction and Consecutive Separation 460
21.3.2	Evaluation of Conversion Profiles Obtained by On-Column Reaction Chromatography 460
21.4	Determination of Activation Parameters 464
21.5	On-Column Reaction Chromatography for the Investigation of
	Catalytic Reactions 465
21.5.1	Hydrogenations over Noble Metal Nanoparticles 465
21.5.2	Ring-Closing Metathesis 468
21.5.3	Gosteli–Claisen Rearrangement 469
21.5.4	Combinatorial High-Throughput Screening: Catalyst by the
	Meter 473
21.6	Outlook 476
	References 476

index 479