Contents

Introduction ---- v

Jeffrey I	D. Achter and Rachel Pries
Generic	Newton polygons for curves of given <i>p</i> -rank —— 1
1	Introduction —— 1
2	Structures in positive characteristic —— 3
2.1	The p -rank —— 3
2.2	Newton polygons —— 4
2.3	Semicontinuity and purity —— 7
2.4	Notation on stratifications and Newton polygons —— 8
3	Stratifications on the moduli space of Abelian varieties 9
3.1	The p -ranks of Abelian varieties —— 9
3.2	Newton polygons of Abelian varieties —— 10
4	The p -rank stratification of the moduli space of stable curves —— 11
4.1	The moduli space of stable curves ————————————————————————————————————
4.2	The p -rank stratification of $\overline{\mathcal{M}}_g$ —— 12
4.3	Connectedness of <i>p</i> -rank strata —— 13
4.4	Open questions about the <i>p</i> -rank stratification —— 13
5	Stratification by Newton polygon —— 14
5.1	Newton polygons of curves of small genus —— 14
5.2	Generic Newton polygons —— 15
6	Hyperelliptic curves —— 16
7	Some conjectures about Newton polygons of curves —— 18
7.1	Nonexistence philosophy —— 19
7.2	Supersingular curves —— 20
7.3	Other nonexistence results —— 20
Alp Bas	sa, Peter Beelen, and Nhut Nguyen
Good to	owers of function fields —— 23
1	Introduction —— 23
2	The Drinfeld modular towers $(X_0(P^n))_{n\geq 0}$ —— 25
3	An example of a classical modular tower —— 32
4	A tower obtained from Drinfeld modules over a different ring —— 33
4.1	Explicit Drinfeld modules of rank 2 —— 33
4.2	Finding an isogeny —— 36
43	Obtaining a tower ——— 38

Claude Carlet and Sylvain Guilley Correlation-immune Boolean functions for easing counter measures to side-channel attacks —— 41 1 Introduction —— 42

2	Preliminaries 45
2.1	The combiner model of pseudo-random generator in a stream cipher

- and correlation-immune functions —— 45
 2.2 Side-channel attacks —— 49
- 2.3 Masking counter measure —— 51
- Methods for allowing masking to resist higher order side-channel attacks —— 53
- 3.1 Leakage squeezing for first-order masking —— 53
- 3.2 Leakage squeezing for second-order masking —— 55
- 3.3 Rotating S-box masking —— 56
- 4 New challenges for correlation-immune Boolean functions —— 58
- 4.1 Basic facts on CI functions, orthogonal arrays and dual distance of codes —— 58
- 4.2 Known constructions of correlation-immune functions —— 61
- 4.3 Synthesis of minimal weights of d-CI Boolean functions —— 65

Jung Hee Cheon, Taechan Kim, and Yongsoo Song

The discrete logarithm problem with auxiliary inputs --- 71

- 1 Introduction —— 72
- Algorithms for the ordinary DLP 73
 Generic algorithms 73
- 2.2 Nongeneric algorithms 76
- 3 The DLPwAI and Cheon's algorithm 78
- 3.1 p-1 cases 79
- 3.2 Generalized algorithms —— 80
- 4 Polynomials with small value sets —— 82
- 4.1 Fast multipoint evaluation in a blackbox manner —— 82
- 4.2 An approach using polynomials of small value sets —— 83
- 5 Approach using the rational polynomials: Embedding to elliptic curves —— 84
- 6 Generalized DLPwAI ---- 85
- 6.1 Representation of a multiplicative subgroup of $\mathbb{Z}_{p-1}^{\times}$ —— 85
- 6.2 A group action on \mathbb{Z}_p^* and polynomial construction 86
- 6.3 Main result —— **86**
- 7 Applications and implications —— 87
- 7.1 Strong Diffie-Hellman problem and its variants —— 87
- 7.2 Attack on the existing schemes using Cheon's algorithm —— 88
- 8 Open problems and further work —— 89

Massimo Giulietti and Gábor Korchmáros Garden of curves with many automorphisms ---- 93 Introduction —— 93 2 Notation and background ---- 94 3 Upper bounds on the size of G depending on g — 95 Upper bounds on the size of the p-subgroups of G depending on the 4 p-rank --- 96 Examples of curves with large automorphism groups --- 97 5 5.1 Curves with unitary automorphism group —— 97 Curves with Suzuki automorphism group ---- 98 5.2 5.3 Curves with Ree automorphism group ---- 99 5.4 The Giulietti-Korchmáros curve —— 99 5.5 The generalized GK curve —— 100 A curve admitting SU(3, p) as an automorphism group —— 101 5.6 General hyperelliptic curves with a IK-automorphism 2-group of order 5.7 2a + 2 - 101A curve with genus $g = (2^h - 1)^2$ admitting a K-automorphism 2-group 5.8 of order of order $2(g-1) + 2^{h+1} - 2 - 101$ General bielliptic curves with a dihedral K-automorphism 2-group of 5.9 order 4(a-1) — 102 A curve of genus g with a semidihedral K-automorphism 2-group of 5.10 order 2(g-1) — 104 Characterizations --- 105 6 6.1 Curves with many automorphisms with respect to their genus —— 105 6.2 Curves with a large nontame automorphism group ---- 106 Theorem 6.2 and some generalizations of Deligne-Lusztig 6.3 curves — 107 6.4 Group-theoretic characterizations —— 109 7 The possibilities for G when the p-rank is 0 - 1108 Large automorphism p-groups in positive p-rank —— 112 p = 2 - 1128.1 p = 3 - 1168.2 8.3 p > 3 - 117

Tor Helleseth

Nonlinear shift registers - A survey and challenges ---- 121

1 Introduction — 121
2 Nonlinear shift registers — 123
2.1 The binary de Bruijn graph — 124
2.2 The pure cycling register — 126
2.3 The complementary cycling register — 126
2.4 De Bruijn sequences — 126

3	Mykkeltveit's proof of Golomb's conjecture —— 129
4	The D -morphism —— 132
5	Conjugate pairs in PCR —— 134
6	Finite fields and conjugate pairs —— 135
6.1	Cycle joining and cyclotomy —— 137
7	Periodic structure of NLFSRs —— 139
8	Conclusions —— 142
	usinger and Alev Topuzoğlu
Permutati	ons of finite fields and uniform distribution modulo 1 —— 145
1	Introduction —— 145
2	Preliminaries —— 146
3	Good and weak families of permutations —— 150
4	Existence of good families —— 151
5	Permutation polynomials of Carlitz rank 3 —— 152
6	Bounds for $f(S_p^{\sigma})$ —— 154
7	Computational results —— 156
8	Concluding remarks —— 157
Alexander	Pott, Kai-Uwe Schmidt, and Yue Zhou
Semifield:	s, relative difference sets,
and bent f	unctions —— 161
1	Introduction —— 161
2	Semifields —— 162
3	Relative difference sets —— 165
4	Relative difference sets and semifields —— 167
5	Planar functions in odd characteristic —— 171
6	Planar functions in characteristic 2 —— 172
7	Component functions of planar functions —— 173
8	Concluding remarks and open problems —— 175
Ron Stein	reld
NTRU cryp	tosystem: Recent developments and emerging mathematical problems in
finite poly	nomial rings —— 179
1	Introduction —— 179
2	Notation and preliminaries —— 181
2.1	Notation —— 181
2.2	Probability and algorithms —— 181
2.3	Rings —— 182
2.4	Lattices —— 182

3	Review of the NTRU cryptosystem —— 183
3.1	The NTRU construction —— 183
3.2	Security of NTRU: Computational/statistical problems and known
	attacks —— 185
4	Recent developments in security analysis of NTRU ——— 189
4.1	Overview —— 189
4.2	Gaussian distributions modulo lattices and Fourier analysis —— 192
4.3	Statistical hardness of the NTRU decision key cracking problem —— 195
4.4	Computational hardness of the ciphertext cracking problem —— 198
5	Recent developments in applications of NTRU —— 200
5.1	NTRU-based homomorphic encryption —— 200
5.2	NTRU-based multilinear maps —— 204
6	Conclusions —— 207
Gabriel	D. Villa-Salvador
Analog	of the Kronecker-Weber theorem in positive characteristic —— 213
1	Introduction —— 213
2	The classical case —— 215
3	A proof of the Kronecker-Weber theorem based on ramification
	groups —— 216
4	Cyclotomic function fields —— 219
5	The maximal Abelian extension of k —— 221
6	Reciprocity law —— 223
7	The proof of David Hayes —— 224
8	Witt vectors and the conductor —— 225
8.1	The conductor —— 228
8.2	The conductor according to Schmid —— 228
9	The Kronecker-Weber-Hayes theorem —— 229
10	Final remarks —— 235

Index —— 239