	$\mathbf{W}\mathbf{h}$	at can't be ignored	1
	1.1	The MATLAB and Octave environments	1
	1.2	Real numbers	3
		1.2.1 How we represent them	3
		1.2.2 How we operate with floating-point numbers	6
	1.3	Complex numbers	8
	1.4	Matrices	10
		1.4.1 Vectors	14
	1.5	Real functions	16
		1.5.1 The zeros	19
		1.5.2 Polynomials	20
		1.5.3 Integration and differentiation	22
	1.6	To err is not only human	25
		1.6.1 Talking about costs	28
	1.7	The MATLAB language	30
		1.7.1 MATLAB statements	32
		1.7.2 Programming in MATLAB	34
		1.7.3 Examples of differences between MATLAB	
		and Octave languages	38
	1.8	What we haven't told you	38
	1.9	Exercises	39
2	Noi	nlinear equations	41
	2.1	Some representative problems	41
	2.2	The bisection method	43
	2.3	The Newton method	47
		2.3.1 How to terminate Newton's iterations	50
	2.4	The secant method	51
	2.5	Systems of nonlinear equations	52

XII	Contents

	2.6	Fixed point iterations	56
		2.6.1 How to terminate fixed point iterations	62
	2.7	Acceleration using Aitken method	63
	2.8	Algebraic polynomials	67
		2.8.1 Hörner's algorithm	68
		2.8.2 The Newton-Hörner method	70
	2.9	What we haven't told you	72
	2.10	Exercises	74
3	Apr	proximation of functions and data	77
	3.1	Some representative problems	77
	3.2	Approximation by Taylor's polynomials	79
	3.3	Interpolation	80
		3.3.1 Lagrangian polynomial interpolation	81
		3.3.2 Stability of polynomial interpolation	86
		3.3.3 Interpolation at Chebyshev nodes	87
		3.3.4 Barycentric interpolation formula	90
		3.3.5 Trigonometric interpolation and FFT	93
	3.4	Piecewise linear interpolation	98
	3.5	Approximation by spline functions	100
	3.6	The least-squares method	
	3.7	What we haven't told you	108
	3.8	Exercises	110
4	Nur	nerical differentiation and integration	113
	4.1	Some representative problems	
	4.2	Approximation of function derivatives	
	4.3	Numerical integration	117
		4.3.1 Midpoint formula	118
		4.3.2 Trapezoidal formula	120
		4.3.3 Simpson formula	121
	4.4	Interpolatory quadratures	123
	4.5	Simpson adaptive formula	
	4.6	Monte Carlo Methods for Numerical Integration	131
	4.7	What we haven't told you	133
	4.8	Exercises	134
5	Line	ear şystems	137
	5.1	Some representative problems	137
	5.2	Linear system and complexity	142
	5.3	The LU factorization method	
	5.4	The pivoting technique	
		5.4.1 The fill-in of a matrix	
	5.5	How accurate is the solution of a linear system?	
	5.6	How to solve a tridiagonal system	162
		•	

		Cor	ntents	XIII
	5.7	Overdetermined systems		. 163
	5.8	What is hidden behind the MATLAB command		. 166
	5.9	Iterative methods	`	. 168
	0.0	5.9.1 How to construct an iterative method		
	5.10	Richardson and gradient methods		
	5.11	The conjugate gradient method		. 177
	5.12	When should an iterative method be stopped?		. 180
	5.12	To wrap-up: direct or iterative?		. 182
		What we haven't told you		
		Exercises		
_	T: me	envalues and eigenvectors		193
6	6.1	Some representative problems		194
	-	The power method		196
	6.2	6.2.1 Convergence analysis		
	6.9	Generalization of the power method		
	6.3	How to compute the shift		
	6.4	Computation of all the eigenvalues		206
	6.5	What we haven't told you		200
	6.6	Exercises		
	6.7	Exercises		. 210
7	Nur	merical optimization		. 213
	7.1	Some representative problems		. 214
	7.2	Unconstrained optimization		
	7.3	Derivative free methods		. 219
	•	7.3.1 Golden section and quadratic interpolation		
		methods		. 219
		7.3.2 Nelder and Mead method		. 223
	7.4	The Newton method		
	7.5	Descent (or line search) methods		228
		7.5.1 Descent directions		229
		7.5.2 Strategies for choosing the steplength α_k .		231
		7.5.3 The descent method with Newton's direction	ons	237
		7.5.4 Descent methods with quasi-Newton direct		
		7.5.5 Gradient and conjugate gradient		
		descent methods		240
	7.6	Trust region methods		242
	7.7	The nonlinear least squares method		248
		7.7.1 Gauss-Newton method		
		7.7.2 Levenberg-Marquardt's method		252
	7.8	Constrained optimization		
		7.8.1 The penalty method		
		7.8.2 The augmented Lagrangian method		
	7.9	What we haven't told you		
	7.10	Exercises		268

Ord		differential equations27			
8.1	Some	representative problems			
8.2	The C	auchy problem			
8.3		$ \text{methods} \dots 27 $			
8.4	The C	rank-Nicolson method			
_		tability			
		ity on unbounded intervals			
0.0		The region of absolute stability			
		Absolute stability controls perturbations 29			
		Stepsize adaptivity for the forward Euler			
	0.0.0	method			
87	High (order methods			
		redictor-corrector methods 30			
		ns of differential equations			
		examples			
0.10		The spherical pendulum			
		The three-body problem			
		Some stiff problems			
8 11		we haven't told you			
		ises			
0.1 2	237.01.01				
Numerical approximation of boundary-value					
prol		329			
9.1					
		representative problems			
9.1	Appro	ximation of boundary-value problems			
		ximation of boundary-value problems			
	Appro	ximation of boundary-value problems			
	Appro	ximation of boundary-value problems			
	Appro 9.2.1	ximation of boundary-value problems			
	Appro 9.2.1	ximation of boundary-value problems			
	Appro 9.2.1 9.2.2	ximation of boundary-value problems			
	Appro 9.2.1 9.2.2	ximation of boundary-value problems			
	Appro 9.2.1 9.2.2 9.2.3	ximation of boundary-value problems			
	Appro 9.2.1 9.2.2 9.2.3	ximation of boundary-value problems			
	Appro 9.2.1 9.2.2 9.2.3 9.2.4	ximation of boundary-value problems			
	Appro 9.2.1 9.2.2 9.2.3 9.2.4	ximation of boundary-value problems			
	Appro 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5	ximation of boundary-value problems			
	Appro 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5	ximation of boundary-value problems			
	Appro 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 9.2.6	ximation of boundary-value problems			
	Appro 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 9.2.6 9.2.7 Hyper	ximation of boundary-value problems			
9.2	Appro 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 9.2.6 9.2.7 Hyper	ximation of boundary-value problems			
9.2	Appro 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 9.2.6 9.2.7 Hyper	ximation of boundary-value problems			
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 Num	8.2 The C 8.3 Euler 8.3.1 8.4 The C 8.5 Zero-s 8.6 Stabili 8.6.2 8.6.3 8.7 High c 8.8 The p 8.9 System 8.10 Some 8.10.1 8.10.2 8.10.3 8.11 What 8.12 Exercis			

				Contents	XV
		9.3.2	Finite difference analysis for the scalar equation	-	359
		9.3.3	Finite element space discretization of		000
			advection equation		366
9.4 The wave equation				367	
		9.4.1	Finite difference approximation of the	wave	
			equation		369
	9.5	What	we haven't told you		373
	9.6	Exerc	ises		374
10	Solu	tions	of the exercises		377
			ter 1		
			ter 2		
			ter 3		
			ter 4		
			ter 5		
			ter 6		
			ter 7		
			ter 8		
			ter 9		
Re	fere	nces			429
Inc	dex .				435