

Contents

1	Introduction	1
1.1	Walking randomly	2
1.2	From walking particles to walking waves	4
1.3	Why quantum walks?	6
1.4	How to implement a quantum walk	7
2	Theory	11
2.1	Waves, spreads and clicks	12
2.2	Quantum coins and steps	13
2.2.1	Walking on a line	14
2.2.2	How to evolve - discrete or continuous	20
2.2.3	Quantum walks in momentum space	20
2.3	Entanglement	26
2.4	Quantum walks in optics	26
2.4.1	Creation and annihilation of photons	27
2.4.2	Quantum walk with beam splitters	27
2.4.3	Quantum walks with creation operators: Single photons and coherent states	29
2.4.4	Limitations of coherent light: Multi-particle quantum walks	32
2.5	A multi-walker quantum walk formalism using creation operators	36
3	A Quantum Walk in Time	39
3.1	Scalability, stability and flexibility	39
3.2	Experimental challenges for quantum walk implementations	40
3.3	How to perform a time walk	42
3.3.1	Flipping the polarization	43
3.3.2	Stepping in time	44
3.3.3	Feedback loop and detection	48
3.4	Photons walking the line: Experimental implementation of a quantum walk in time	51
3.5	Experimental results	55
3.5.1	Hadamard walk	55
3.5.2	Adapting the theory	58
3.5.3	Changing the coin	59
3.6	Problems and limitations	62
3.6.1	Limited time and decoherence	62

3.6.2	Losses	63
3.6.3	The influence of multi-photon components on APDs	64
3.6.4	Back reflections	65
3.6.5	How far can we walk (theoretically)?	66
3.7	Conclusions	67
4	From Ballistic Spread to Localization	69
4.1	Changes in the experimental setup	71
4.2	Experimental results	74
4.2.1	Hadamard walk	74
4.2.2	A speedup due to slow fluctuations	76
4.2.3	Photons on a random walk	80
4.2.4	Quantum walks with static disorders – the Anderson localization effect	83
4.2.5	The walk from quantumness to classicality	85
4.2.6	Comparison of the spread in different environments	86
4.3	What to do with the losses... a different approach	89
4.4	Where do we walk from here?	90
5	Photons Walking the Plane	93
5.1	From one to two dimensions	95
5.1.1	Theory of a quantum walk in two dimensions	95
5.1.2	One/two walkers in two/one dimensions	97
5.1.3	4D quantum coins and their two-particle interpretation	99
5.2	A two-dimensional quantum walk in time	102
5.2.1	Stepping in four directions	102
5.2.2	Coins with four sides	105
5.3	A two-dimensional quantum walk in time experiment	107
5.3.1	Experimental details	111
5.3.2	Experimental simulations of two-particle quantum walks	114
5.3.3	Limitations and imperfections	123
5.4	Conclusion and Outlook - How many dimensions can we explore?	124
6	Conclusions and Outlook	127
A	Simulation of two-particle quantum walks with a 2D quantum walk	131
A.1	Distinguishable particles	131
A.2	Indistinguishable particles	132