Contents

Preface — v

Metric number theory, lacunary series and systems of dilated functions —— 1		
1	Uniform distribution modulo 1 —— 2	
2	Metric number theory —— 4	
3	Discrepancy —— 6	
4	Lacunary series — 7	
5	Almost everywhere convergence —— 10	
6	Sums involving greatest common divisors —— 12	

József Beck

Strong uniformity —— 17

1	Introduction —— 17
2	Superuniformity and super-duper uniformity —— 26
2.1	Superuniformity of the typical billiard paths —— 26
2.2	Super-duper uniformity of the 2-dimensional ray —— 37
3	Superuniform motions —— 41
3.1	Billiards in other shapes —— 41
3.2	Superuniformity of the geodesics on an equifacial tetrahedron
	surface —— 42

Dmitriy Bilyk

Discrepancy theory and harmonic analysis ---- 45 Introduction — 4E

1	introduction —— 45
2	Exponential sums —— 46
3	Fourier analysis methods —— 49
3.1	Rotated rectangles —— 49
3.2	The lower bound for circles —— 51
3.3	Further remarks 53
4	Dyadic harmonic analysis: discrepancy function estimates —— 54
4.1	L^p -discrepancy, $1 —— 55$
4.2	The L^{∞} discrepancy estimates —— 56
4.3	The other endpoint, L^1 — 58

Josef Dick	and Friedrich Pillichshammer
Explicit co	onstructions of point sets and sequences with low discrepancy —— 63
1	Introduction —— 63
2	Lower bounds —— 65
3	Upper bounds —— 67
4	Digital nets and sequences —— 69
5	Walsh series expansion of the discrepancy function —— 71
6	The construction of finite point sets according to Chen and
	Skriganov —— 77
7	The construction of infinite sequences according to Dick and
	Pillichshammer —— 79
8	Extensions to the \mathcal{L}_q discrepancy —— 82
9	Extensions to Orlicz norms of the discrepancy function —— 83
Michael D	Prmota
Subseque	ences of automatic sequences and uniform distribution —— 87
1	Introduction —— 87
2	Automatic sequences —— 90
3	Subsequences along the sequence $\lfloor n^c \rfloor$ — 93
4	Polynomial subsequences —— 95
5	Subsequences along the primes —— 98
Henri Fau	re
On Atana	ssov's methods for discrepancy bounds of low-discrepancy
	s —— 105
1	Introduction —— 105
2	Atanassov's methods for Halton sequences —— 107
2.1	Review of Halton sequences —— 107
2.2	Review of previous bounds for the discrepancy of Halton
	sequences —— 108
2.3	Atanassov's methods applied to Halton sequences —— 108
2.4	Scrambling Halton sequences with matrices —— 113
3	Atanassov's method for (t, s) -sequences —— 118
3.1	Review of (t, s) -sequences —— 118
3.2	Review of bounds for the discrepancy of (t, s) -sequences —— 119
3.3	Atanassov's method applied to (t, s) -sequences ————————————————————————————————————
3.4	The special case of even bases for (t, s) -sequences —— 121
4	Atanassov's methods for generalized Niederreiter sequences and
	(t, e, s)- sequences —— 124

Peter Hellek	kalek
The hybrid	spectral test: a unifying concept —— 127
1	Introduction —— 127
2	Adding digit vectors —— 129
3	Notation —— 132
4	The hybrid spectral test —— 134
5	Examples —— 137
5.1	Example I: Integration lattices —— 137
5.2	Example II: Extreme and star discrepancy —— 140
Peter Kritze	r, Friedrich Pillichshammer, and Henryk Woźniakowski
Tractability	of multivariate analytic problems —— 147
1	Introduction —— 147
2	Tractability —— 149
3	A weighted Korobov space of analytic functions —— 154
4	Integration in $H(K_{s,a,b})$ —— 156
5	L_2 -approximation in $H(K_{s,a,b})$ —— 162
6	Conclusion and outlook —— 169
Gerhard Lar	
Discrepancy	y estimates for sequences: new results and open problems —— 171
1	Introduction —— 171
2	Metrical and average type discrepancy estimates for digital point sets
	and sequences and for good lattice point sets —— 174
3	Discrepancy estimates for and applications of hybrid
	sequences —— 181
4	Miscellaneous problems —— 185
Gunther Led	
A short intr	oduction to quasi-Monte Carlo option pricing —— 191
1	Overview —— 191
2	Foundations of financial mathematics —— 192
2.1	Bonds, stocks and derivatives —— 192
2.2	Arbitrage and the no-arbitrage principle —— 194
2.3	The Black–Scholes model —— 196
2.4	SDE models —— 197
2.5	Lévy models —— 199
2.6	Examples —— 200
3	MC and QMC simulation —— 201
3.1	Nonuniform random number generation —— 201
3.2	Generation of Brownian paths —— 208
3.3	Generation of Lévy paths —— 214

x —	Contents
-----	----------

3.4	Multilevel (quasi-)Monte Carlo —— 216
3.5	Examples —— 218
Dial Manage	
Dirk Nuyens	
The constru	ction of good lattice rules and polynomial lattice rules —— 223
1	Lattice rules and polynomial lattice rules —— 223
1.1	Lattice rules —— 224
1.2	Polynomial lattice rules —— 225
2	The worst-case error —— 227
2.1	Koksma-Hlawka error bound —— 227
2.2	Lattice rules —— 229
2.3	Polynomial lattice rules —— 232
3	Weighted worst-case errors —— 236
4	Some standard spaces —— 238
4.1	Lattice rules and Fourier spaces —— 238
4.2	Randomly-shifted lattice rules and the unanchored Sobolev
	space —— 239
4.3	Tent-transformed lattice rules and the cosine space —— 241
4.4	Polynomial lattice rules and Walsh spaces —— 243
5	Component-by-component constructions —— 245
5.1	Component-by-component construction —— 245
5.2	Fast component-by-component construction —— 249
6	Conclusion —— 252

Index —— 257