Contents

Fo	rewoi	rd		V			
Pr	eface	•••••	VII				
Pa	rt I: N	I: Mass Conservation					
1	The	Princi	ple	3			
	1.1	Conse	rvation of Mass	3			
		1.1.1	A Convenient Form of the Equation of Mass				
			Conservation	4			
	1.2	Applic	cation of Mass Conservation to a Biological Cell:				
		Metab	olic Flux Analysis	6			
	1.3	Applic	cation of Mass Conservation to Macroscopic				
		Systen	ns	8			
		1.3.1	Challenges in Oxygen Supply to Bioreactors	11			
	1.4	Useful	Forms of Mass Conservation in Fluid Systems	11			
		1.4.1	What is a Fluid?	11			
		1.4.2	Useful Derivatives	12			
		1.4.3	Equation of Continuity for a Single Component				
			System	13			
		1.4.4	Equation of Continuity in Different Coordinate				
			Systems	16			
				17			
	Fully	y Open-	ended Exercise	20			
	Refe	erences .		20			
2	Mas	s Flux.		21			
	2.1	Prima	ry Driving Force for Mass Flux	21			
		2.1.1	Basis for Expressing Mass Flux	22			
		2.1.2	Mass and Molar Fluxes	25			
	2.2	A Cor	stitutive Equation	27			
		2.2.1	Fick's First Law	27			
			2.2.1.1 In Concentrated Solutions	29			

	2.3	Solution	on Approaches					
		2.3.1	Shell Balance Approach					
		2.3.2	Continuity (Conservation) Equation Approach					
	2.4	Steady	State Diffusion					
		2.4.1	Steady State Diffusion Across Membranes					
		2.4.2	Steady State Radial Diffusion Across Tubular					
			Walls					
		2.4.3	Steady State Radial Diffusion Across Spherical					
			Pellets					
			2.4.3.1 Enzyme Immobilised on a Porous Spherical					
	2.5	T.T	Matter					
	2.5		dy State Diffusion					
	2.6		Steady State Approximation (PSSA) for Unsteady					
	_		Diffusion					
			1.15					
		_	ended Exercise					
	Refe	rences						
D.	mt II.	Momo	entum Conservation					
ra	11 1 11.	Monic	intum Conservation					
3	Mon	Momentum Flux						
	3.1	Rheolo	ogy					
	3.2		of Flows					
	3.3	• •	Momentum Balances					
	3.4		on of Motion					
		3.4.1	Applications of the Equations of Motion: Steady State					
			Falling Film					
		3.4.2	Flow in a Cylindrical Pipe					
		· · · · -	3.4.2.1 Capillary Flow					
		3.4.3	Tangential Annular Flow					
		3.4.4	Dimensionless Numbers and Non-dimensional					
		J.⊣.¬	Analysis					
	3.5	Uneter	ady State Flow					
	3.6		ile Flow					
	3.7		ons to Equations					
	3.1		<u>.</u>					
		3.7.1	Stream Function Approach					
	2.0		Boundary Layer Theory					
	3.8		lent Flow					
	3.9		scopic Aspects: The Engineering Bernoulli					
		•	on					
		3.9.1	Friction Factor for Flow through a Straight					
			Horizontal Pipe					
		3.9.2	Friction Factor for Solids Moving Relative to a					
			Fluid					

Contents XIII

	3.9.3	Friction Factor in Packed Beds				
Exerc	cises					
Fully	Open-	ended Exercise				
Refe	rences.					
art III:	Energ	y Conservation				
Ther	Thermal Energy Flux					
	4.1 Other Modes of Heat Flux					
4.2 F	Equatio	n of Energy				
	4.2.1	Temperature Profile in a Tissue				
	4.2.2	Unsteady State Heat Conduction				
Fully	Open-	ended Exercise				
Refe	rence					
art IV:	Charg	e Conservation				
Char	Charge Flux					
5.1	Lorent	z Force Law				
5.2		e Density and Flux				
5.3	Maxw	ell's Relations				
	5.3.1	How is the Electric Field Related to its				
		Source?				
	5.3.2	How is the Magnetic Field Intensity Related to its				
		Source, the Charge Flux?				
	5.3.3	How are Electric Field and Magnetic Flux				
		Related?				
	5.3.4	A Comment on the Net Magnetic Flux Out of Any				
		Region				
5.4	An Ex	pression for Charge Conservation				
5.5	Maxw	ell's Equations in Differential Form				
	5.5.1	Application of Maxwell's Equations to Get Useful				
		Relationships				
	5.5.2	Electroencephalogram (EEG)				
5.6	Consti	tutive Equation				
5.7	Ions is	n Solutions				
	5.7.1	Electro Neutrality				
	5.7.2	Charge Relaxation Time				
	5.7.3	Debye Length				
Exer	cises					
5.7 Exer	5.5.2 Constitutions in 5.7.1 5.7.2 5.7.3	Relationships Electroencephalogram (EEG) itutive Equation n Solutions Electro Neutrality Charge Relaxation Time Debye Length				

XIV Contents

6.1		ler Simultaneous, Multiple Driving Forcestaneous Concentration Gradient and Electrical Potential		
0.1	_	ent		
	6.1.1	Mobility of Ions in Solution		
	6.1.2	Mobility of Ions Across a Membrane		
	6.1.3	Electrical Circuit Representation of a Membrane		
	6.1.4	Action Potential and Axial Current		
	6.1.5	Electrophoresis		
6.2	•	taneous Concentration Gradient and Velocity		
0.2		ent: Blood Oxygenators		
	6.2.1	The Transfer Coefficient Approach: Inter-phase		
	0.2.1	Oxygen Supply to Bioreactors		
	6.2.2	The Transfer Coefficient Approach: Immobilised		
	0.2.2	Enzyme Reaction Kinetics		
6.3	•			
0.5		Fransfer to Fluid Flowing in a Long Circular Tube		
	Under Laminar Flow Conditions			
	6.3.1	Momentum Flux Induced by Thermal Force: Free		
	0.012	Convection		
	6.3.2	The Utility of Heat Transfer Coefficients: Design		
	0.5.2	of Heat Exchangers		
	6.3.3	Some Other Useful Formulations.		
	6.3.4	The Unsteady State Bioheat Transfer Equation		
Exe	rcises			
pend	lix			
App	endix 1	: Background on Vectors and Tensors		
A	endix 2	: Derivation of Fick's First Law		
App				