Contents

l	Active	Shape Model and Its Application to Face Alignment	1	
	Huchu	an Lu, Fan Yang		
	1	Introduction	1	
2 Statistical Shape Models		Statistical Shape Models	3	
		2.1 Point Distribution Model	4	
		2.2 Modeling Local Structure	11	
		2.3 Multi-resolution Active Shape Model	13	
	3	Image Search Using Active Shape Model	15	
		3.1 Initial Estimate	15	
		3.2 Compute the Movements of Landmarks	16	
		3.3 Example of Search	19	
		3.4 Application and Problems	19	
	4	Improvements on Classical Active Shape Model	21	
		4.1 Constraint on b	21	
		4.2 Width of Search Profile	22	
		4.3 Landmarks Grouping	22	
		4.4 Direction of Search Profile	25	
		4.5 Skin-Color Model	25	
	5	Related Work	27	
	6	Conclusions	29	
	Refe	rences	29	
2	Condi	tion Relaxation in Conditional Statistical Shape Models	33	
_		•	33	
	1	Oost, Sho Tomoshige, Akinobu Shimizu Introduction	33	
1				
	2 Conditional Statistical Shape Models		36 37	
			38	
4 Reliability of the Conditional Term			39	
	5	Level Set Based Conditional SSMs	39 39	
	6	Relaxation of the Conditional Term	39	

XIV Contents

	7	Employ	ing the Sel	lection Formula for Relaxation	41		
	8	Automatic Estimation of the Reliability of the Conditional					
					44		
	9	Performance Comparison of Various Conditional SSMs		47			
	10	Conclus	sions		52		
	Refere	ences			53		
3	Indepe	Independent Component Analysis and Its Application to					
				olution Remote Sensing Images	57		
	Xiang-Y	an Zeng,	Yen-Wei C	Chen			
	1				57		
	2	Backgro	ound of Inc	dependent Component Analysis	59		
		2.1		ransformation of Multivariate Data	59		
		2.2	Blind Sor	urce Separation	60		
		2.3		lent Components Analysis	62		
			2.3.1	Data Model	62		
			2.3.2	Why ICA?	63		
		2.4		orithms	63		
			2.4.1	Whitening the Data	63		
			2.4.2	ICA by Information Maximization	65		
			2.4.3	ICA by Maximization of Non-gaussianity	67		
	3	ICA for	Remote S	ensing Study	70		
		3.1		Hyperspectral Remote Sensing	70		
		3.2		High-Resolution Remote Sensing	71		
			3.2.1	Independent Components of RGB Remote			
				Sensing Images	71		
		3.3	Classifica	ation of High-Resolution Remote Sensing			
		0.0			75		
			3.3.1	Pixel Classification by Spectral			
				Information	75		
			3.3.2	Classification by Spectral Information and			
			5.5.2	Spatial Consistency	76		
	4	Conclus	sions		79		
	=				79		
4	-			om Artificially Generated Images for			
		_	_		83		
	Hiroyuk			, Hiroshi Murase			
	1	Introdu		e Generative Learning	83		
		1.1	-	g of Degradation Characteristics	84		
		1.2		on of Degradation Characteristics	84		
	2	Genera		ng for Traffic Sign Recognition	86		
		2.1		on Models of Traffic Signs	86		
		2.2	Training	by Generative Learning	88		
			2.2.1	Parameter Estimation Step	89		
			222	Generation of Training Images	92		

Contents XV

	3	Recognition by the Subspace Method	94
		3.1 Construction of a Subspace	94
		3.2 Multiple Frame Integration	95
		3.3 Circular Sign Detection	95
	4	Experiment	96
	•	4.1 Results	99
		4.2 Discussion	100
	5	Summary	102
	_	ences	102
	Kerer	dices	102
5		tructure Preserving Based Subspace Analysis Methods and	
		tions	105
	Jian Ch	eng, Hanqing Lu	
	1	Introduction	105
	2	Local Structure Preserving	107
	3	Local Structure Preserving for Face Recognition	107
		3.1 Supervised Kernel Locality Preserving Projections	108
		3.2 Experimental Results on Face Recognition	109
	4	Local Structure Preserving for Image Clustering	111
		4.1 pLSA with Local Structure Preserving	111
		4.1.1 Sparse Neighborhood Consistency	112
		4.1.2 Local Word Consistency	113
		4.1.3 The Regularized Model	114
		4.2 Model Fitting	114
		4.3 Experimental Results on Image Clustering	116
	5	Conclusions	119
	_	ences	119
_			
6	_	Representation for Image Super-Resolution	123
		ua Han, Yen-Wei Chen	
	l	Introduction	123
	2	Sparse Coding	126
		2.1 Orthogonal Matching Pursuit	127
		2.2 K-SVD Algorithm	128
	3	Sparse Coding Based Super-Resolution	132
	4	Analysis of the Represented Features for Local Image Patches	136
	5	HR2LR Dictionary Propagation of SC	140
	6	Experiments	144
	7	Conclusions	146
	Refer	ences	147
7	Sampli	ng and Recovery of Continuously-Defined Sparse Signals	
	_	Applications	151
		Iirabayashi	
	1	Introduction	151
	2	Signals with Finite Rate of Innovation as an Extension of	
	_	Band-Limited Signals	153

XVI Contents

3 Sampling and Recovery of the Sequence of Diracs					155	
		3.1		s Case	155	
		3.2		Denoising	158	
		3.3		m Likelihood Estimation	159	
	4			covery of Signals of Piecewise Polynomials	161	
	5			age Feature Extraction	164	
	6				169	
					169 171	
8		Tensor-Based Subspace Learning for Multi-pose Face Synthesis				
			ort Igarasi iction		171	
	1 2			linear Algebra Foundations	173	
	Z			ons and Preliminaries	173	
		2.1		Tensor Definitions	173	
			2.1.1		173	
			2.1.2	Tensor Norm and Rank		
			2.1.3	Symmetry and Diagonal Tensors	175	
			2.1.4	Matricization of Tensors	176	
			2.1.5	Tensor Multiplication: The <i>n</i> -Mode	17	
				Product	176	
			2.1.6	Matrix Product	177	
		2.2		Decomposition	178	
			2.2.1	Tucker Decomposition	178	
			2.2.2	CANDECOMP/PARAFAC		
				Decomposition	180	
			2.2.3	Other Decompositions	180	
	3	Tensor		ospace Learning Algorithm	181	
		3.1	_	epresentation	18	
		3.2	Tensor S	Subspace Building	181	
		3.3		is Procedure	183	
	4	Experi	ments and	Results	185	
		4.1	Data		18:	
		4.2	Image D	Deformation	185	
		4.3	Data Co	mpression	183	
		4.4	Synthes	is Result and Evaluation	187	
	5	Conclu	ısion		192	
	Refer	ences			192	
9	Editors	S			19′	
16) Autho	r Index			199	