## **Content**

## Preface — V

Acronyms, abbreviations and symbols — XI

| 1     | Process Integration and Intensification: an introduction —— 1              |  |  |  |
|-------|----------------------------------------------------------------------------|--|--|--|
| 1.1   | Process Intensification —— 1                                               |  |  |  |
| 1.2   | Process Systems Engineering and Process Integration —— 3                   |  |  |  |
| 1.3   | Contributions to PIs and PI to energy and water saving —— 4                |  |  |  |
| 1.4   | What is Process Integration? —— 4                                          |  |  |  |
| 1.5   | A brief history of the development of Process Integration —— 5             |  |  |  |
| 1.6   | The aim and scope of this textbook —— 8                                    |  |  |  |
|       | References — 9                                                             |  |  |  |
| 2     | Setting energy targets and Heat Integration —— 13                          |  |  |  |
| 2.1   | Introduction —— 13                                                         |  |  |  |
| 2.1.1 | Initial development of Heat Integration —— 14                              |  |  |  |
| 2.1.2 | Pinch Technology and targeting Heat Recovery: the thermodynami roots —— 14 |  |  |  |
| 2.1.3 | Supertargeting: full-fledged HEN targeting —— 15                           |  |  |  |
| 2.1.4 | Modifying the Pinch Idea for HEN retrofit —— 16                            |  |  |  |
| 2.1.5 | Benefits of Process Integration —— 16                                      |  |  |  |
| 2.2   | Pinch Analysis for maximising energy efficiency —— 17                      |  |  |  |
| 2.2.1 | Introduction to Heat Exchange and Heat Recovery —— 17                      |  |  |  |
| 2.2.2 | Basic principles —— 19                                                     |  |  |  |
| 2.2.3 | Basic Pinch Technology — 28                                                |  |  |  |
| 2.3   | Summary —— 63                                                              |  |  |  |
|       | References —— 64                                                           |  |  |  |
| 3     | Synthesis of Heat Exchanger Networks —— 67                                 |  |  |  |
| 3.1   | Introduction —— 67                                                         |  |  |  |
| 3.2   | HEN synthesis —— 67                                                        |  |  |  |
| 3.2.1 | The Pinch Design Method —— 68                                              |  |  |  |
| 3.2.2 | Methods using mathematical programming —— <b>89</b>                        |  |  |  |
| 3.3   | Grassroots and retrofits, impact of economic criteria —— 93                |  |  |  |
| 3.3.1 | Network optimisation —— 93                                                 |  |  |  |
| 3.3.2 | The Network Pinch —— 94                                                    |  |  |  |
| 3.4   | Summary —— 96                                                              |  |  |  |
|       | References — 96                                                            |  |  |  |



| 4              | Total Site Integration —— 99                                         |  |  |  |
|----------------|----------------------------------------------------------------------|--|--|--|
| 4.1            | Introduction —— 99                                                   |  |  |  |
| 4.2            | What is a Total Site and what are the benefits? —— 100               |  |  |  |
| 4.2.1          | Total Site definition —— 101                                         |  |  |  |
| 4.2.2          | Total Site Analysis interfaces —— 102                                |  |  |  |
| 4.3            | HI extension for Total Sites: data extraction for Total Sites —— 103 |  |  |  |
| 4.3.1          | The algorithm —— 103                                                 |  |  |  |
| 4.3.2          | Step-by-step guidance —— 105                                         |  |  |  |
| 4.3.3          | Working session —— 109                                               |  |  |  |
| 4.4            | Total Site Profiles and Total Site Composite Curves —— 110           |  |  |  |
| 4.5            | Site Utility Grand Composite Curve (SUGCC) —— 118                    |  |  |  |
| 4.6            | Combined Heat and Power Generation (CHP, Cogeneration)               |  |  |  |
|                | targeting —— 120                                                     |  |  |  |
| 4.6 <i>.</i> 1 | A simple cogeneration model —— 121                                   |  |  |  |
| 4.6.2          | Targeting CHP using the SUGCC —— 122                                 |  |  |  |
| 4.6.3          | Choice of optimal steam pressure levels —— 124                       |  |  |  |
| 4.7            | Advanced Total Site developments —— 126                              |  |  |  |
| 4.7.1          | Introduction of process-specific minimum allowed temperature         |  |  |  |
|                | differences —— 126                                                   |  |  |  |
| 4.7.2          | Numerical tools for Total Site Heat Integration —— 127               |  |  |  |
| 4.7.3          | Power Integration —— 128                                             |  |  |  |
| 4.8            | Summary —— <b>133</b>                                                |  |  |  |
|                | References —— 134                                                    |  |  |  |
| 5              | Introduction to Water Pinch Analysis —— 137                          |  |  |  |
| 5.1            | Water management and minimisation —— 137                             |  |  |  |
| 5.2            | History and definition of Water Pinch Analysis —— 138                |  |  |  |
| 5.3            | Applications of Water Pinch Analysis —— 139                          |  |  |  |
| 5.4            | Water Pinch Analysis steps —— 140                                    |  |  |  |
| 5.5            | Analysis of water networks and data extraction —— 141                |  |  |  |
| 5.5.1          | Analysis of water networks —— 141                                    |  |  |  |
| 5.5.2          | Data extraction —— 143                                               |  |  |  |
| 5.5.3          | Example —— <b>144</b>                                                |  |  |  |
|                | References —— 148                                                    |  |  |  |

| 6     | Setting the maximum water recovery targets —— 151                       |  |  |
|-------|-------------------------------------------------------------------------|--|--|
| 6.1   | Introduction —— 151                                                     |  |  |
| 6.2   | Maximum water recovery target for single pure freshwater —— 155         |  |  |
| 6.2.1 | Water Cascade Analysis technique —— 155                                 |  |  |
| 6.2.2 | Source/Sink Composite Curves (SSCC) —— 158                              |  |  |
| 6.2.3 | Significance of the Pinch region —— 159                                 |  |  |
| 6.3   | Maximum water recovery target for a single impure freshwater            |  |  |
|       | source —— <b>160</b>                                                    |  |  |
| 6.3.1 | Pinched problems —— 160                                                 |  |  |
| 6.3.2 | Threshold problems —— 166                                               |  |  |
| 6.4   | Maximum water recovery targets for multiple freshwater                  |  |  |
|       | sources — <b>168</b>                                                    |  |  |
| 6.5   | Working session —— 170                                                  |  |  |
| 6.6   | Solution —— 170                                                         |  |  |
|       | References —— 174                                                       |  |  |
| 7     | Water network design/retrofit —— 177                                    |  |  |
| 7.1   | Introduction —— 177                                                     |  |  |
| 7.2   | Source/Sink Mapping Diagram (SSMD) —— 177                               |  |  |
| 7.3   | Source and Sink Allocation Curves (SSAC) — 179                          |  |  |
| 7.3.1 | Example of network design using SSCC for utility purity superior to all |  |  |
|       | other streams —— 183                                                    |  |  |
| 7.3.2 | Freshwater purity not superior to all other streams —— 186              |  |  |
| 7.3.3 | Simplification of a water network or constructing other network         |  |  |
|       | possibilities —— 189                                                    |  |  |
| 7.4   | Working session —— 192                                                  |  |  |
| 7.5   | Solution —— 193                                                         |  |  |
| 7.6   | Water MATRIX software —— 195                                            |  |  |
|       | References —— 196                                                       |  |  |
| 8     | Design of Cost-Effective Minimum Water Network (CEMWN) —— 197           |  |  |
| 8.1   | Introduction —— 197                                                     |  |  |
| 8.2   | Water Management Hierarchy —— 197                                       |  |  |
| 8.3   | Cost-Effective Minimum Water Network (CEMWN) —— 199                     |  |  |
| 8.4   | Industrial case study – a semiconductor plant —— 209                    |  |  |
| 8.4.1 | Using CEMWN targets as reference benchmarks —— 227                      |  |  |
|       | References —— 227                                                       |  |  |

| v  |   | _   |      |
|----|---|-----|------|
| Λ. | _ | Cor | iten |

| 9      | Conclusions and sources of further information —— 229                                    |
|--------|------------------------------------------------------------------------------------------|
| 9.1    | HEN targeting and synthesis —— 229                                                       |
| 9.2    | Total Site Integration —— 229                                                            |
| 9.3    | Total Site methodology addressing variable energy supply and                             |
|        | demand —— <b>231</b>                                                                     |
| 9.4    | Utility system optimisation accounting for cogeneration —— 231                           |
| 9.5    | Maximum water recovery targeting and design —— 232                                       |
| 9.5.1  | Recommended books for further reading — 233                                              |
| 9.5.2  | State of-the-art review —— 234                                                           |
| 9.6    | Analysing the designs of isolated energy systems —— 235                                  |
| 9.7    | PI contribution to supply chain development —— 236                                       |
| 9.8    | Hydrogen networks design and management —— 236                                           |
| 9.9    | Oxygen Pinch Analysis —— 237                                                             |
| 9.10   | Pressure drop considerations and heat transfer enhancement in Process Integration —— 238 |
| 9.11   | Computational and modelling tools suitable for applying PI —— 240                        |
| 9.11.1 | Heat and power PI applications —— 241                                                    |
| 9.11.2 | Water Pinch software —— 242                                                              |
| 9.12   | Challenges and recent developments in Pinch-based Pi —— 243                              |
|        | References — 244                                                                         |

Index ---- 249