Contents

napter 1	Introduction	1
1.1 Rar	e Earth Permanent-magnet Alloys ·····	2
1.1.1	Rare earth	
1.1.2	Classification and development of rare earth permanent-magnet	
	alloys ····	2
1.1.3	Crystal structure of rare earth permanent-magnet alloys	4
1.1.4	Magnetic parameters of rare earth permanent-magnet alloys	7
1.1.5	Criterion of permanent-magnet alloys (materials)	8
1.2 Prin	nciple for Alloy Phase and Phase Transformation and Growth	
Rul	e of New Phase ·····	8
1.2.1	Phase ····	9
1.2.2	Phase transformation ·····	
1.2.3	Alloy	9
1.2.4	Material ·····	
1.2.5	Alloy phase·····	···10
1.2.6	Solid solution	···10
1.2.7	Exsolution precipitation	···10
1.2.8	Thermodynamic bases for phase transformation and	
	classification	
1.2.9	Single crystal	
1.2.10	Single crystal superalloy	
1.2.11	Enthalpy	
1.2.12	Entropy·····	
1.2.13	Latent heat of phase transformation	···19
1.2.14	6 F	
1.2.15	Rule of growing up of new phase	20
1.3 Res	earch Methods of the Magnetic Properties of Rare Earth	
Per	manent Magnets ·····	···21

Refe	erence	es ·····	25
Chapte	er 2	The First Generation Rare Earth Permanent-magnet Alloys	27
2.1	Hig	h temperature Phase Transition and Magnetic Properties of	
	Sm	Co ₅ Permanent-magnet Alloys	28
2.2		in Situ and Dynamic Observation on High Temperature	
	Pha	ase Transformation of SmCo ₅ Permanent Magnetic Alloy	
	at 2	25-750℃	
2.	2.1	Magnetic measurement ·····	
2	.2.2	Sample preparation and experiment method ······	38
2	.2.3	Influence of annealing treated specimen on coercivity	
2	.2.4	The in situ and dynamic observation by 1000 kV HVEM under	
		heating condition ·····	
2	.2.5	Discussion ····	··· 50
2.3		gnetism and the in Situ and Dynamic Observation of Permanent	
	Ma	gnetic Alloy of SmCo ₅ by Annealing at 600-1000 ℃ ········	··· 54
2	.3.1	Specimen preparation and experimental method·····	55
2	.3.2	Analysis on chemical composition of the SmCo ₅ permanent	
		magnetic alloy	
2	.3.3	Magnetic measurement ····	55
2	.3.4	Structure of magnetic domain ·····	56
2	.3.5	Irreversible loss of SmCo ₅ permanent magnetic alloy after	
		annealing at 25-1000℃	57
2	.3.6	Electronic energy spectrum experiment and analysis of SmCo ₅	
		permanent magnetic alloy	58
2	.3.7	The in situ and dynamic observation on eutectoid	
		decomposition of SmCo ₅ by electronic microscope	61
2	.3.8	The in situ and dynamic observation of SmCo ₅ in thermal	
		state using transmission electronic microscope	62
2	.3.9	The in situ and dynamic observation on SmCo ₅ in thermal	
		condition of 750-960℃ by Transmission Electronic Microscope…	
		Discussion	
2	.3.11	Conclusions	
2.4		alysis on Variation of the Coercivity and Phase Transformation	
	.4.1	Specimen preparation and experimental method	68
_	.4.2	Experimental result and discussion	
	.4.3	Conclusions	····74
2.5	The	e Optic-electronic Spectrum Study on SmCos Permanent	

XIII

Ma	gnetic Alloy ·····	···74
2.5.1	Specimen preparation technique and experimental condition of	
	optic-electronic energy spectrum	
2.5.2	Investigation on surface composition of SmCo ₅ ······	75
2.5.3	Atoms concentration variation of elements of samarium,	
	cobalt and oxygen from surface to depth ·····	76
2.5.4	Surface compound	77
2.5.5	Conclusions ·····	77
2.6 An	alysis on Magnetic Hysteresis Loop of SmCo ₅ Permanent	
Ma	gnetic Alloy	77
2.6.1	Specimen preparation technique, magnetic measurement and	
	transmission microscope condition and experimental method	78
2.6.2	Analysis on chemical composition of three kinds of specimens	78
2.6.3	Analysis on preparation technique	80
2.6.4	Curve of magnetic performance and analysis at 77-550K	80
2.6.5	Observation and analysis on specimen using TEM	81
2.6.6	Conclusions	
2.7 Ma	gnetism of SmCo ₅ Permanent Alloy at 1.5-523 K······	82
2.7.1	Specimen preparation technique, magnetic measurement	
	apparatus and experimental method	82
2.7.2	Magnetism measurement and curve of SmCo ₅ permanent	
	magnetic alloy at 1.5 K and 40 K·····	83
2.7.3	Measurement of demagnetization curve and value of magnetic	
	parameter at −196-250°C by magnetic parameter	
	measurement apparatus	85
2.7.4	Reversible temperature coefficient of SmCo ₅ at -196-250°C ······	87
2.7.5	Coercivity of SmCo ₅ at 475-1000°C ······	
2.7.6	Discussion	89
2.7.7	Conclusions	90
Referenc	es ·····	90
C1		
Chapter 3	The Second Generation Rare Earth Permanent-magnet Alloys	0.1
	Alloys	95
3.1 Pha	ase Precipitation, Phase Transformation at High Temperature	
	d Magnetism of High Coercivity Sm(Co, Cu, Fe, Zr) _{7,4}	96
3.1.1	Specimen preparation process and experimental method	
3.1.2	Results of specimen magnetic measurement	
3.1.3	Microtexture of the alloy at room temperature	

The in situ and dynamic observation on precipitation, growth	
up and high temperature phase transformation of cellular	
structure from room temperature to high temperature	··· 101
Conclusions ·····	116
nction of Zirconium on Sm(Co, Cu, Fe, Zr)7.4 Permanent Magnetic	c
oy & Observation and Analysis by Electron Microscope	
Specimen preparation and experimental method	118
Conclusions ····	···121
gnetism of High Coercivity Sm(Co, Cu, Fe, M) _{7.4} Permanent	
gnetic Alloy at 1.5-523K·····	···121
Preparation of specimen and magnetism measurement apparatus	3
Conclusions ····	125
es ·····	···126
The Third Generation Rare Earth Permanent Magnet	··· 129
provement of the Properties of NdFeB Permanent Magnets	
e to Element Substitutions	129
gnetic Properties and the Occupancy of Co and Ga Atoms for	
Fe(Co, Al, Ga)B Permanent-Magnetic Alloys ·····	133
Preparation and method	133
Nd ₁₆ Co ₁₆ Fe _{61-x} Ga _x B ₇ alloy	138
e Studies of Main Phase Nd ₂ Fe ₁₄ B and Nd ₂ (Fe,Co) ₁₄ B in NdFeB	
	145
SEM analysis	145
	147
_,	
	147
Conclusions	
	up and high temperature phase transformation of cellular structure from room temperature to high temperature Conclusions action of Zirconium on Sm(Co, Cu, Fe, Zr) _{7.4} Permanent Magneticology & Observation and Analysis by Electron Microscope Specimen preparation and experimental method Research on function of Zirconium Conclusions gnetism of High Coercivity Sm(Co, Cu, Fe, M) _{7.4} Permanent gnetic Alloy at 1.5-523K Preparation of specimen and magnetism measurement apparatuse and measurement method Measurement results and discussion Conclusions The Third Generation Rare Earth Permanent Magnet et to Element Substitutions gnetic Properties and the Occupancy of Co and Ga Atoms for Fe(Co, Al, Ga)B Permanent-Magnetic Alloys Preparation and method Md ₁₆ Fe _{77-x} Co _x B ₇ alloy Nd ₁₆ Co ₁₆ Fe _{61-x} Ga _x B ₇ and Nd ₁₆ Co ₁₆ Fe _{61-x} Al _y B ₇ alloys Nd ₁₆ Co ₁₆ Fe _{67-y} Al _y B ₇ and Nd ₁₆ Co ₁₆ Fe _{61-x} Al _y B ₇ alloys Conclusions et Studies of Main Phase Nd ₂ Fe ₁₄ B and Nd ₂ (Fe,Co) ₁₄ B in NdFeB manent-magnet Alloys The preparation of samples and experimental methods SEM analysis The formation of Nd ₂ Fe ₁₄ B Mössbauer spectra at room temperature Composition analysis and the studies of Mössbauer spectra for Nd ₂ (Fe, Co) ₁₄ B In situ and dynamic observation of TEM on Nd ₂ Fe ₁₄ B and Nd ₂ (Fe, Co) ₁₄ B

4.4 Stu	dies on B-rich Phase in NdFeB Alloy	150
4.4.1	Preparation process and experimental method	
4.4.2	The in situ and dynamic observation of Nd _{1.11} Fe ₄ B ₄ by TEM ···	
4.4.3	Study on Nd _{1+e} Fe ₄ B ₄ by X-Ray diffraction and Mössbauer	
	effect	153
4.4.4	Analysis on Nd _{1.1} Fe ₄ B ₄ phase······	
4.4.5	Relationship between B-rich phase and coercivity	
4.4.6	Conclusions	156
4.5 Inf	luence of Boron Content in NdFeB on Nd ₂ Fe ₁₄ B Phase and	
	gnetic Property ·····	156
4.5.1	Specimen preparation process and experimental method	157
4.5.2	Influence of boron content on alloy magnetic property and	
	phase structure	157
4.5.3	Conclusions	161
4.6 Hig	gh Curie Temperature NdFeCoGaB Permanent Magnetic Alloy	162
4.6.1	Preparation process and experiment method	
4.6.2	Using cobalt to replace part of iron	
4.6.3	Use Ga to replace part of iron in NdFeCoB alloy	
4.6.4	Conclusions	
4.7 Inf	luence of Adding Element Dysprosium on Performance of	
Nd	FeB Alloy·····	168
4.7.1	Specimen preparation process and experimental method	169
4.7.2	Experiment result using SEM	169
4.7.3	Measurement of magnetism	170
4.7.4	Experiment result using transmission microscope	171
4.7.5	Distribution of Dy ₂ O ₃ ·····	171
4.7.6	Conclusions	174
4.8 Na	nocrystalline Microstructure and Coercivity Mechanism	
Mo	odel of NdFeB Alloys with Nb and Ga	174
4.8.1	Experimental procedure	175
4.8.2	Magnetic properties measuring	175
4.8.3	Study of Mössbauer effect ·····	176
4.8.4	Study of nano-microstructure of NdFeB alloys with Nb	178
4.8.5	Dynamic cross and microstructure of the NdFeB alloys with	
	Nb and Dy ····	178
4.8.6	Dynamic cross and microstructure of the NdFeB alloys with	
	Nb, Ga, Co and Dy ·····	179
4.8.7	Curie temperature of the NdFeB alloys with Nb	180

4	.8.8	New coercivity mechanism model of multi-component NdFeB alloys	100
	0.0	Conclusions	102
-	.8.9		183
4.9		Situ and Dynamic Observation on Magnetic and Phase	
		nsformation of Nd ₁₅ Fe ₇₈ B ₇ Permanent Magnet at High	104
1		•	
	.9.1	Preparation process of specimen and experiment method	193
4	.9.2	Microstructure and phase in crystal boundary of NdFeB permanent magnet	105
	0.2		193
4	.9.3	Phase transformation of microstructure of B-rich phase at high temperature	100
4	0.4		103
4	.9.4	Phase transformation of microstructure of Nd-rich filmy belt	100
	0.5	in Nd ₁₅ Fe ₇₈ B ₇ crystal boundary at high temperature	190
4	.9.5	Phase transformation of Nd ₂ Fe ₁₄ B base phase of Nd ₁₅ Fe ₇₈ B ₇	102
	0.6	alloy at high temperature	
	.9.6		194
4.10		Situ and Dynamic Observation on High Temperature	
		nase Transformation and Magnetism of Nd ₁₆ Fe ₇₇ B ₇	105
		ermanent Magnetic Alloy	
	.10.1		196
4	.10.2	•	100
		microstructure and high temperature phase transformation	
	1.10.3	•	
	.10.4	•	
	1.10.5	•	202
4	1.10.6	· ·	
		volume	202
4	1.10.7		
		of Nd ₁₆ Fe ₆₉ Co ₈ B ₇ ·····	
	1.10.8		204
4.1		nalysis on Lamella Phase of Grain Boundary in Microstructure	
		f NdFeB Permanent Magnetic Alloy	
	1.11.1	•	
	1.11.2	8	205
2	1.11.3	· · · · · · · · · · · · · · · · · · ·	
		samples	
4.1		uick Quenched NdFeB Permanent Magnetic Alloy	
4	1.12.1	Sample preparation technique and experimental method	215

4.12.2	Measurement result of quick quenched magnet	215
4.12.3	Relationship between crystallization temperature and	
	coercivity ·····	
4.12.4	Microstructure at room temperature	216
4.12.5	The in situ and dynamic observation on the non-crystal s	ample
	transferring to micro-crystal by HVEM ·····	216
4.12.6	Conclusions	217
4.13 St	ability of the Rare Earth Permanent Magnetic Alloy	217
4.13.1	Stability on temperature	217
4.13.2	Time stability	224
4.13.3	Chemical stability	224
4.13.4	Conclusions	224
Referenc	es	225
Chamtan F	Developments and Durament of the Danie Fouth Danier	4
Chapter 5	Developments and Prospect of the Rare Earth Perman magnet Alloys	1ent- 221
	magnet Anoys	231
5.1 Ov	erseas General Development·····	232
5.2 Do	mestic General Development ·····	238
5.3 De	velopment Survey of Preparation Technology	243
	plication and Expectation	
Referenc	es ······	253
A mm om diter		257
Appendix ·		23/
Appendi	x 1 The Structure of Outer Electrons for Rare Earths	257
Appendi	•	
Appendi	x 3 Physical Properties of Rare Earths	259
Appendi		
Appendi		
	Gaussian units	262
Index		265