Inhaltsverzeichnis

1	Einl	eitung	1
	1.1	Motivation	1
	1.2	Messverfahren für Mischbehälter und Biogasfermenter	4
		1.2.1 Instrumentierung von Biogasfermentern	
		1.2.2 Erfassung der Hydrodynamik in Biogasfermentern	5
		1.2.3 Erfassung der Hydrodynamik in Technikumsanlagen	7
	1.3	Autonome Sensorik in Strömungsanwendungen	9
	1.4	Zielsetzung	12
2	Gru	ndlagen der Strömungsdynamik	15
	2.1	Hydrodynamik und Parameter von Rührwerksströmungen	15
		2.1.1 Aufbau von Rührbehältern	
		2.1.2 Strömungsformen in Rührbehältern	18
		2.1.3 Makro- und Mikrobereich eines Mischprozesses	21
		2.1.4 Kennzahlen des Homogenisierens	23
		2.1.5 Kennzahlen des Suspendierens	26
	2.2	Strömungsdynamik von Partikeln in Fluiden	26
		2.2.1 Kräfte an strömenden Partikeln	26
		2.2.2 Widerstandszahl und Sphärizität von Partikeln	31
		2.2.3 Auftriebsneutralität	32
		2.2.4 Strömungsfolgeverhalten	33
3	Sensorik für Strömungsfolger		39
	3.1	Temperaturmessfühler	39
		3.1.1 Auswahl geeigneter Messfühler	39
		3.1.2 Eigenschaften und Betrieb des Temperaturmessfühlers	40
		3.1.3 Modellbetrachtung des thermischen Ansprechverhaltens	47
		3.1.4 Messung des thermischen Ansprechverhaltens	49
		3.1.5 Kalibrierung	55
		3.1.6 Messunsicherheitsbetrachtung	56
	3.2	Druckmessfühler	58
		3.2.1 Auswahl geeigneter Messfühler	58
		3.2.2 Eigenschaften und Betrieb des piezoresistiven Druckmessfühlers	61
		3.2.3 Bestimmung der Eintauchtiefe	64
		3.2.4 Kalibrierung	67
		3.2.5 Messunsicherheitsbetrachtung	69
	3.3	Beschleunigungsmessfühler	71
		3.3.1 Auswahl geeigneter Messfühler	71
		3.3.2 Eigenschaften und Betrieb des Beschleunigungsmessfühlers	73

4	Syst	emlösung der Strömungsfolger	74		
	4.1	Überblick über den konzeptionierten Strömungsfolger	74		
	4.2	Aufbau der Erfassungselektronik	7 5		
		4.2.1 Verarbeitungseinheit	75		
		4.2.2 Datenspeicher	78		
		4.2.3 Autarke Energieversorgung	79		
		4.2.4 Leiterkartenmodul			
	4.3	Aufbau des Sensorpartikels	86		
		4.3.1 Gehäusekonstruktion			
		4.3.2 Sensorpartikelintegration	88		
	4.4	Basisstation	90		
5	Validierung des Strömungsverhaltens der Sensorpartikel im Rührbehälter				
	5.1	Experimenteller Aufbau und Versuchsdurchführung	91		
		5.1.1 Aufbau des Rührbehälters			
		5.1.2 Versuchsdurchführung			
		5.1.3 Dichte und Stokes-Zahl der Sensorpartikel			
		5.1.4 Referenzmessung der Zirkulationszeiten des Fluids	95		
	5.2	Ergebnisse	96		
		5.2.1 Einfluss des Staudrucks	96		
		5.2.2 Axiale Position: Homogenität und Strömungsdynamik			
		5.2.3 Beschleunigungsanalyse			
		5.2.4 Zirkulationszeiten			
		5.2.5 Vergleich zu Strömungssimulationen	116		
	5.3	Schlussfolgerungen	121		
6	Eins	satz von Sensorpartikeln in Fermentern	123		
	6.1	Experimenteller Aufbau und Versuchsdurchführung	123		
		6.1.1 Aufbau der Technikumsfermenter	123		
		6.1.2 Versuchsdurchführung	124		
		6.1.3 Dichte und Stokes-Zahl der Sensorpartikel	125		
	6.2	Ergebnisse	126		
		6.2.1 Axiale Position: Feststoffverteilung und Strömungsdynamik	126		
		6.2.2 Bestimmung des Suspendierzustandes	129		
		6.2.3 Phasenportraits der axialen Bewegung	130		
		6.2.4 Zirkulationszeiten	131		
		6.2.5 Temperatur	134		
	6.3	Schlussfolgerungen	136		
7	Zus	ammenfassung und Ausblick	137		
	7.1	Zusammenfassung	137		
	7.2	Ausblick	138		
Li	terat	urverzeichnis	140		

Anhang	- Verzeichnis relevanter wissenschaftlicher Arbeiten	
Anhang	${\bf B} \text{- Modellierung des Ansprechverhaltens des Temperaturmessf\"{u}hlers} \dots$	151
Anhang	C - Eigenschaften der Messfühler	153
C.1	Temperaturmessfühler	153
C.2	Piezoresistiver Druckmessfühler	153
C.3	Beschleunigungssensor	154
Anhang	D - Lastprofil der Elektronik und Verhalten des Energiespeichers	155