## Contents

| 1      | Introduction |                                                     |    |  |  |  |  |
|--------|--------------|-----------------------------------------------------|----|--|--|--|--|
|        | 1-1          | Motivation                                          | 1  |  |  |  |  |
|        | 1-2          | Modern challenges                                   | 1  |  |  |  |  |
|        | 1-3          | Facing the challenges                               | 2  |  |  |  |  |
|        | 1-4          | Concluding remarks                                  |    |  |  |  |  |
| <br>Pa | rt I         | Algebraic symbolic and numeric methods              |    |  |  |  |  |
|        |              | - Ingestate symbolic and nameric methods            |    |  |  |  |  |
| 2      | Bas          | sics of ring theory                                 | 9  |  |  |  |  |
|        | 2-1          | Some applications to geodesy and geoinformatics     | 9  |  |  |  |  |
|        | 2-2          | Numbers from operational perspective                | 9  |  |  |  |  |
|        | 2-3          | Number rings                                        | 13 |  |  |  |  |
|        | 2-4          | Concluding remarks                                  | 16 |  |  |  |  |
| 3      | Bas          | Basics of polynomial theory                         |    |  |  |  |  |
|        | 3-1          | Polynomial equations                                |    |  |  |  |  |
|        | 3-2          | Polynomial rings                                    |    |  |  |  |  |
|        |              | 3-21 Polynomial objects as rings                    |    |  |  |  |  |
|        |              | 3-22 Operations "addition" and "multiplication"     |    |  |  |  |  |
|        | 3-3          | Factoring polynomials                               |    |  |  |  |  |
|        | 3-4          | Polynomial roots                                    |    |  |  |  |  |
|        | 3-5          | Minimal polynomials                                 |    |  |  |  |  |
|        | 3-6          | Univariate polynomials with real coefficients       |    |  |  |  |  |
|        |              | 3-61 Quadratic polynomials                          |    |  |  |  |  |
|        |              | 3-62 Cubic polynomials                              |    |  |  |  |  |
|        |              | 3-63 Quartic polynomials                            |    |  |  |  |  |
|        | 3-7          | Methods for investigating roots                     |    |  |  |  |  |
|        |              | 3-71 Logarithmic and contour plots on complex plane |    |  |  |  |  |
|        |              | 3-72 Isograph simulator                             |    |  |  |  |  |
|        |              | 3-73 Application of inverse series                  |    |  |  |  |  |
|        | 3-8          |                                                     |    |  |  |  |  |
|        | 3-9          | Concluding remarks                                  |    |  |  |  |  |
| 4      | Gre          | Groebner basis                                      |    |  |  |  |  |
|        | 4-1          | The origin                                          |    |  |  |  |  |
|        | 4-2          | Basics of Groebner basis                            |    |  |  |  |  |
|        | 4-3          |                                                     |    |  |  |  |  |
|        |              | 4-31 Mathematica computation of Groebner basis      |    |  |  |  |  |
|        |              | 4-32 Maple computation of Groebner basis            |    |  |  |  |  |
|        | 4-4          | Concluding remarks                                  |    |  |  |  |  |



## XIV Contents

| 5 | Polynomial resultants |                        |                               |                                                     |    |  |  |
|---|-----------------------|------------------------|-------------------------------|-----------------------------------------------------|----|--|--|
|   | 5-1                   | Result                 | tants: Aı                     | a alternative to Groebner basis                     | 49 |  |  |
|   | 5-2                   |                        |                               | ltants                                              |    |  |  |
|   | 5-3                   |                        |                               | ial resultants                                      |    |  |  |
|   |                       | 5-31                   | F. Mac                        | aulay formulation:                                  | 52 |  |  |
|   |                       | 5-32                   | B. Stu                        | rmfels' formulation                                 | 54 |  |  |
|   |                       | 5-33                   | The D                         | ixon resultant                                      | 55 |  |  |
|   |                       |                        | 5-331                         | Basic concepts                                      | 55 |  |  |
|   |                       |                        | 5-332                         | Formulation of the Dixon resultant                  | 56 |  |  |
|   |                       |                        | 5-333                         | Dixon's generalization of the Cayley-Bézout method  | 57 |  |  |
|   |                       |                        | 5-334                         | Improved Dixon resultant - Kapur-Saxena-Yang        |    |  |  |
|   |                       |                        |                               | method                                              | 58 |  |  |
|   |                       |                        | 5 - 335                       | Heuristic methods to accelerate the Dixon resultant | 59 |  |  |
|   |                       |                        | 5 - 336                       | Early discovery of factors: the EDF method          |    |  |  |
|   | 5-4                   | Concl                  | uding re                      | marks                                               | 61 |  |  |
| 6 |                       |                        |                               |                                                     | 63 |  |  |
|   | 6-1                   |                        |                               | remarks                                             | 63 |  |  |
|   | 6-2                   |                        |                               | o homotopy                                          | 63 |  |  |
|   | 6-3                   |                        | Definition and basic concepts |                                                     |    |  |  |
|   | 6-4                   |                        |                               | ear equations via homotopy                          | 65 |  |  |
|   |                       | 6-41                   |                               | g homotopy path as initial value problem            | 69 |  |  |
|   |                       | 6-42                   |                               | of linear homotopy                                  | 71 |  |  |
|   |                       |                        | 6-421                         | Fixed point homotopy                                | 71 |  |  |
|   |                       |                        | 6-422                         | Newton homotopy                                     | 71 |  |  |
|   |                       |                        | 6 - 423                       | Start system for polynomial systems                 | 72 |  |  |
|   | 6-5                   | Concl                  | uding re                      | marks                                               | 76 |  |  |
| 7 | Sol                   |                        |                               | rdetermined Systems                                 | 79 |  |  |
|   | 7-1                   |                        |                               | odetic and geoinformatics unknowns                  | 79 |  |  |
|   | 7-2                   | Algeb                  |                               | st Square Solution (ALESS)                          | 80 |  |  |
|   |                       | 7-21                   |                               | orming overdetermined systems to determined         | 80 |  |  |
|   |                       | 7-22                   |                               | the determined system                               | 82 |  |  |
|   | 7-3                   | Gauss                  | -Jacobi                       | combinatorial algorithm                             | 84 |  |  |
|   |                       | 7-31                   | Combin                        | natorial approach: the origin                       | 84 |  |  |
|   |                       | 7-32                   |                               | and nonlinear Gauss-Markov models                   | 87 |  |  |
|   |                       | 7-33                   | Gauss-                        | Jacobi combinatorial formulation                    | 88 |  |  |
|   |                       |                        | 7-331                         | Combinatorial solution of nonlinear Gauss-Markov    |    |  |  |
|   |                       |                        |                               | model                                               | 92 |  |  |
|   |                       |                        | 7-332                         | Construction of minimal combinatorial subsets       |    |  |  |
|   |                       |                        | 7-333                         | Optimization of combinatorial solutions             |    |  |  |
|   |                       | _                      | 7-334                         | The Gauss-Jacobi combinatorial algorithm            |    |  |  |
|   | 7-4                   | $\operatorname{Concl}$ | uding re                      | marks                                               | 98 |  |  |

|     |                | Contents                                                          | ΑV  |
|-----|----------------|-------------------------------------------------------------------|-----|
| 8   | Ext            | ended Newton-Raphson method                                       | 101 |
| •   | 8-1            | Introductory remarks                                              |     |
|     | 8-2            | The standard Newton-Raphson approach                              |     |
|     | 8-3            | Examples of limitations of the standard approach                  |     |
|     | 0 0            | 8-31 Overdetermined polynomial systems                            |     |
|     |                | 8-32 Overdetermined non-polynomial system                         |     |
|     |                | 8-33 Determined polynomial system                                 |     |
|     |                | 8-34 Underdetermined polynomial system                            |     |
|     | 8-4            | Extending the Newton-Raphson approach using pseudoinverse         |     |
|     | 8-5            | Applications of the Extended Newton-Raphson method                |     |
|     | 8-6            | Concluding remarks                                                |     |
|     | 0-0            | Concluding femarks                                                | 110 |
| 9   | $\mathbf{Pro}$ | crustes solution                                                  | 111 |
|     | 9-1            | Motivation                                                        | 111 |
|     | 9-2            | Procrustes: Origin and applications                               | 112 |
|     |                | 9-21 Procrustes and the magic bed                                 |     |
|     |                | 9-22 Multidimensional scaling                                     |     |
|     |                | 9-23 Applications of Procrustes in medicine                       |     |
|     |                | 9-231 Gene recognition                                            |     |
|     |                | 9-232 Identification of malaria parasites                         |     |
|     | 9-3            | Partial procrustes solution                                       |     |
|     | 00             | 9-31 Conventional formulation                                     |     |
|     |                | 9-32 Partial derivative formulation                               |     |
|     | 9-4            | The General Procrustes solution                                   |     |
|     | 9-4<br>9-5     | Extended general Procrustes solution                              |     |
|     | 9-0            | 9-51 Mild anisotropy in scaling                                   |     |
|     |                |                                                                   |     |
|     | 0.6            | 9-52 Strong anisotropy in scalling                                |     |
|     | 9-6            | Weighted Procrustes transformation                                |     |
|     | 9-7            | Concluding remarks                                                | 135 |
|     |                |                                                                   |     |
| Par | rt II          | Applications to geodesy and geoinformatics                        |     |
| 10  | TDS            | S-GNSS orientations and vertical deflections                      | 130 |
| 10  |                | Introductory remarks                                              |     |
|     |                | Positioning systems                                               |     |
|     |                | Global positioning system (GPS)                                   |     |
|     |                |                                                                   |     |
|     | 10-4           | Local positioning systems (LPS)                                   |     |
|     |                | 10-41 Local datum choice in an LPS 3-D network                    |     |
|     |                | 10-42 Relationship between global and local level reference frame |     |
|     | 40 =           | 10-43 Observation equations                                       |     |
|     | 10-5           | Three-dimensional orientation problem                             |     |
|     |                | 10-51 Procrustes solution of the orientation problem              |     |
|     |                | 10-52 Determination of vertical deflection                        |     |
|     |                | Example: Test network Stuttgart Central                           |     |
|     | 10-7           | Concluding remarks                                                | 153 |

| 11 | Cartesian                                                  | to ellip  | soidal mapping                                                                                                                                               | . 155 |  |
|----|------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
|    | 11-1 Introd                                                | uctory re | emarks                                                                                                                                                       | . 155 |  |
|    | 11-2 Mapping topographical points onto reference ellipsoid |           |                                                                                                                                                              |       |  |
|    | 11-3 Mappi                                                 | ng geom   | $\operatorname{etry}$                                                                                                                                        | . 158 |  |
|    | 11-4 Minim                                                 | um dista  | ince mapping                                                                                                                                                 | . 160 |  |
|    | 11-41                                                      | Grafare   | end-Lohse's mapping of $\mathbb{T}^2 \longrightarrow \mathbb{E}^2_{a,a,b} \dots$                                                                             | . 163 |  |
|    | 11-42                                                      | Groebn    | er basis' mapping of $\mathbb{T}^2 \longrightarrow \mathbb{E}^2_{a,a,b} \ldots$                                                                              | . 164 |  |
|    | 11-43                                                      | Extend    | her basis' mapping of $\mathbb{T}^2 \longrightarrow \mathbb{E}^2_{a,a,b}$ ed Newton-Raphson's mapping of $\mathbb{T}^2 \longrightarrow \mathbb{E}^2_{a,a,b}$ | . 166 |  |
|    | 11-5 Conclu                                                | iding rer | narks                                                                                                                                                        | . 171 |  |
| 12 | Positioning by ranging                                     |           |                                                                                                                                                              |       |  |
|    | 12-1 Applie                                                | ations of | f distances                                                                                                                                                  | . 173 |  |
|    | 12-2 Rangii                                                | ng by glo | obal navigation satellite system (GNSS)                                                                                                                      | . 174 |  |
|    | 12-21                                                      | The pse   | udo-ranging four-points problem                                                                                                                              |       |  |
|    |                                                            | 12-211    | Sturmfels' approach                                                                                                                                          |       |  |
|    |                                                            | 12-212    | Groebner basis approach                                                                                                                                      |       |  |
|    | 12-22                                                      | Ranging   | g to more than four GPS satellites                                                                                                                           |       |  |
|    |                                                            | 12-221    | Extended Newton-Raphson solution                                                                                                                             |       |  |
|    |                                                            | 12-222    | Homotopy solution of GPS N-point problem                                                                                                                     |       |  |
|    |                                                            | 12 - 223  | $Least\ squares\ versus\ Gauss-Jacobi\ combinatorial\ .$                                                                                                     |       |  |
|    |                                                            |           | cal positioning systems (LPS)                                                                                                                                |       |  |
|    | 12-31                                                      | Planar    | ranging                                                                                                                                                      |       |  |
|    |                                                            | 12 - 311  | Conventional approach                                                                                                                                        |       |  |
|    |                                                            | 12 - 312  | Sylvester resultants approach                                                                                                                                |       |  |
|    |                                                            | 12-313    | Reduced Groebner basis approach                                                                                                                              |       |  |
|    |                                                            | 12-314    | Planar ranging to more than two known stations.                                                                                                              | 198   |  |
|    |                                                            | 12-315    | ALESS solution of overdetermined planar ranging                                                                                                              |       |  |
|    |                                                            |           | problem                                                                                                                                                      |       |  |
|    | 12-32                                                      |           | limensional ranging                                                                                                                                          |       |  |
|    |                                                            | 12-321    | Closed form three-dimensional ranging                                                                                                                        |       |  |
|    |                                                            | 12-322    | Conventional approaches                                                                                                                                      |       |  |
|    |                                                            | 12-323    | Solution by elimination approach-2                                                                                                                           |       |  |
|    |                                                            | 12-324    | Groebner basis approach                                                                                                                                      |       |  |
|    |                                                            | 12-325    | Polynomial resultants approach                                                                                                                               |       |  |
|    |                                                            | 12-326    | N-point three-dimensional ranging                                                                                                                            |       |  |
|    |                                                            | 12-327    | ALESS solution                                                                                                                                               |       |  |
|    | 10.10                                                      | 12-328    | Extended Newton-Raphson's solution                                                                                                                           |       |  |
|    | 12-4 Concl                                                 | uding rei | marks                                                                                                                                                        | 216   |  |
| 13 |                                                            |           | section methods                                                                                                                                              |       |  |
|    |                                                            |           | plem and its importance                                                                                                                                      |       |  |
|    |                                                            |           | tion                                                                                                                                                         |       |  |
|    | 13-21                                                      |           | resection                                                                                                                                                    |       |  |
|    |                                                            | 13-211    | Conventional analytical solution                                                                                                                             |       |  |
|    |                                                            | 13-212    | Groebner basis approach                                                                                                                                      | 222   |  |

|     |                               | Con                                                      | tents     | XVII |  |  |
|-----|-------------------------------|----------------------------------------------------------|-----------|------|--|--|
|     |                               | 13-213 Sturmfels' resultant approach                     |           | 223  |  |  |
|     | 13-22                         | Three-dimensional resection                              |           |      |  |  |
|     | 10-22                         | 13-221 Exact solution                                    |           |      |  |  |
|     |                               | 13-222 Solution of Grunert's distance equations          |           |      |  |  |
|     |                               | 13-223 Groebner basis solution of Grunert's equations :. |           |      |  |  |
|     |                               | 13-224 Polynomial resultants' solution of Grunert's      |           | 220  |  |  |
|     |                               | distance equations                                       |           | 920  |  |  |
|     |                               |                                                          |           |      |  |  |
|     |                               | 13-225 Linear homotopy solution                          |           |      |  |  |
|     |                               | 13-226 Grafarend-Lohse-Schaffrin approach                |           |      |  |  |
|     | 10 0 DL +                     | 13-227 3d-resection to more than three known stati       |           |      |  |  |
|     |                               | grammetric resection                                     |           |      |  |  |
|     |                               | Grafarend-Shan Möbius photogrammetric resection .        |           |      |  |  |
|     |                               | Algebraic photogrammetric resection                      |           |      |  |  |
|     | 13-4 Conclu                   | uding remarks                                            | • • • • • | 248  |  |  |
| 14  | Positionin                    | ng by intersection methods                               |           | 2/0  |  |  |
| 1-4 | 14.1 Interes                  | ection problem and its importance                        |           | 240  |  |  |
|     |                               | etic intersection                                        |           |      |  |  |
|     |                               | Planar intersection                                      |           |      |  |  |
|     | 14-21                         | 14-211 Conventional solution                             |           |      |  |  |
|     |                               | 14-211 Conventional solution                             |           |      |  |  |
|     | 14.00                         |                                                          |           |      |  |  |
|     | 14-22                         |                                                          |           |      |  |  |
|     |                               |                                                          |           |      |  |  |
|     |                               | 14-222 Conventional solution                             |           |      |  |  |
|     |                               | 14-223 Reduced Groebner basis solution                   |           |      |  |  |
|     |                               | 14-224 Sturmfels' resultants solution                    |           |      |  |  |
|     | 14 0 DL 1                     | 14-225 Intersection to more than three known stati       |           |      |  |  |
|     | 14-3 Photo                    | ogrammetric intersection                                 |           |      |  |  |
|     |                               | 14-306 Grafarend-Shan Möbius approach                    |           |      |  |  |
|     |                               | 14-307 Commutative algebraic approaches                  |           |      |  |  |
|     | 14-4 Concl                    | uding remarks                                            |           | 263  |  |  |
| 15  | GNSS environmental monitoring |                                                          |           |      |  |  |
|     |                               | ite environmental monitoring                             |           |      |  |  |
|     |                               | remote sensing                                           |           |      |  |  |
|     |                               | Space borne GNSS meteorology                             |           |      |  |  |
|     |                               | Ground based GNSS meteorology                            |           |      |  |  |
|     |                               | ction (bending) angles                                   |           |      |  |  |
|     |                               | Transformation of trigonometric equations to algebra     |           |      |  |  |
|     |                               | Algebraic determination of bending angles                |           |      |  |  |
|     | 10 02                         | 15-321 Application of Groebner basis                     |           |      |  |  |
|     |                               | 15-322 Sylvester resultants solution                     |           |      |  |  |
|     | 15-4 Algeb                    | raic analysis of some CHAMP data                         |           |      |  |  |
|     |                               | uding remarks                                            |           |      |  |  |
|     | TO-O COUCI                    | uding romands                                            |           | 200  |  |  |

## XVIII Contents

| 16            | Algebraic   | diagnosis of outliers                                    | 289 |
|---------------|-------------|----------------------------------------------------------|-----|
|               | 16-1 Outlie | rs in observation samples                                | 289 |
|               |             | raic diagnosis of outliers                               |     |
|               |             | Outlier diagnosis in planar ranging                      |     |
|               |             | Diagnosis of multipath error in GNSS positioning         |     |
|               |             | uding remarks                                            |     |
| 17            | Datum tr    | ansformation problems                                    | 303 |
|               | 17-1 The 7- | -parameter datum transformation and its importance       | 303 |
|               | 17-2 Algeb  | raic solution of the 7-parameter transformation problem  | 305 |
|               | 17-21       | Groebner basis transformation                            | 305 |
|               | 17-22       | Dixon resultant solution                                 | 309 |
|               | 17-23       | Gauss-Jacobi combinatorial transformation                | 313 |
|               |             | -parameter (affine) datum transformation                 |     |
|               |             | raic solution of the 9-parameter transformation          |     |
|               |             | The 3-point affine transformation problem                |     |
|               |             | 17-411 Simplifications for the symbolic solution         | 320 |
|               |             | 17-412 Symbolic solution with Dixon resultant            | 321 |
|               |             | 17-413 Symbolic solution with reduced Groebner basis .   | 323 |
|               | 17-42       | The N-points problem                                     | 325 |
|               |             | 17-421 ALESS approach to overdetermined cases            | 327 |
|               |             | 17-422 Homotopy solution of the ALESS-determined         |     |
|               |             | model                                                    | 329 |
|               | 17-43       | Procrustes solution                                      | 333 |
|               | 17-5 Concl  | uding remark                                             | 337 |
| Αp            | pendix      |                                                          | 339 |
|               | Appendix A  | A-1: Definitions                                         | 339 |
|               | Appendix A  | A-2: C. F. Gauss combinatorial approach                  | 340 |
|               | Appendix A  | A-3: Linear homotopy                                     | 343 |
|               | Appendix A  | A-4: Determined system of the 9-parameter transformation |     |
|               |             | nt problem                                               |     |
| $\mathbf{Re}$ | ferences    |                                                          | 349 |
| Inc           | lev         |                                                          | 271 |