Contents

T	introduction and Motivation					
	1.1	How to Learn Motor Skills?	2			
	1.2	The Robotics Viewpoint	4			
	1.3	From the View of Cognitive Science	5			
	1.4	Requirements for Plausible and Feasible Models	6			
	1.5	Scope and Structure	7			
I	Ва	nckground	9			
2	Inti	roduction to Function Approximation and Regression	11			
	2.1	Problem Statement	11			
	2.2	Measuring Quality	12			
	2.3	Function Fitting or Parametric Regression	13			
		2.3.1 Linear Models with Ordinary Least Squares	13			
		2.3.2 Online Approximation with Recursive Least Squares	15			
	2.4	Non-Parametric Regression	17			
		2.4.1 Interpolation and Extrapolation	17			
		2.4.2 Gaussian Process Regression	19			
		2.4.3 Artificial Neural Networks	20			
	2.5	Local Learning Algorithms	24			
		2.5.1 Locally Weighted Projection Regression	25			
		2.5.2 XCSF - a Learning Classifier System	26			
	2.6	Discussion: Applicability and Plausibility	26			
3	, Ele	ementary Features of Local Learning Algorithms 2				
	3.1	Clustering via Kernels	30			
		3.1.1 Spherical and Ellipsoidal Kernels	32			
		3.1.2 Alternative Shapes	34			
	3.2	Local Models	35			
	3.3	Inference as a Weighted Sum	36			
	3.4	Interaction of Kernel, Local Models, and Weighting Strategies	37			

X Contents

4	_		nic Description of XCSF	41					
	4.1		al Workflow	41					
	4.2		ing, Covering, and Weighted Prediction	43					
	4.3		Model Adaptation	43					
	4.4	Globa	l Structure Evolution	45					
		4.4.1	Uniform Crossover and Mutation	47					
		4.4.2	Adding new Receptive Fields and Deletion	48					
		4.4.3	Summary	48					
	4.5	Releva	ant Extensions to XCSF	50					
		4.5.1	Subsumption	50					
		4.5.2	Condensation and Compaction	52					
II	Ar	nalvsis	and Enhancements of XCSF	. 55					
		_							
5			Why XCSF works	57					
	5.1		's Objectives	57					
	5.2		acy versus Generality	58					
	5.3		age and Overlap	59					
	5.4	Three	Phases to Meet the Objectives	60					
6	Evo	Evolutionary Challenges for XCSF							
	6.1	Resou	rce Management and Scalability	64					
		6.1.1	A Simple Scenario	64					
		6.1.2	Scalability Theory	66					
		6.1.3	Discussion	67					
		6.1.4	Empirical Validation	68					
		6.1.5	Structure Alignment Reduces Problem Complexity	69					
		6.1.6	Summary and Conclusion	71					
	6.2	Guide	ed Mutation to Reduce Learning Time	72					
		6.2.1	Guiding the Mutation	73					
		6.2.2	Experimental Validation	77					
		6.2.3	Experiment 2: A 10D Sine Wave	79					
		6.2.4	What is the Optimal Guidance Probability?	81					
		6.2.5	Summary and Conclusion	82					
II	I Co	ntrol	Applications in Robotics	85					
7	Bas	ics of	Kinematic Robot Control	87					
	71	Task S	Space and Forward Kinematics	88					

Contents XI

	7.2		90						
		· · · · · · · · · · · · · · · · · · ·	91						
	7.3		92						
		•	93						
		• •	94						
		•	96						
	7.4	A Simple Directional Control Loop	98						
8	Learning Directional Control of an Anthropomorphic Arm 10								
	8.1		02						
			04						
			05						
	8.2	P O	105						
	8.3	Simulation and Tasks	107						
		8.3.1 Target Generation	07						
	8.4	Evaluating Model Performance	108						
	8.5	Experiments							
		8.5.1 Linear Regression for Control							
		8.5.2 RBFN	114						
		8.5.3 XCSF							
		8.5.4 LWPR							
		8.5.5 Exploiting Redundancy: Secondary Constraints							
		8.5.6 Representational Independence							
	8.6	Summary and Conclusion							
		•							
9	Vist		.25						
	9.1	Vision Defines the Task Space							
		9.1.1 Reprojection with Stereo Cameras	127						
	9.2	Learning to Control Arm and Head	13(
	9.3	Experimental Validation	131						
10	Summary and Conclusion 1								
	10.1	Function Approximation in the Brain?	137						
		Computational Demand of Neural Network Approximation							
	10.3	Learning Motor Skills for Control	139						
		10.3.1 Retrospective: Is it Cognitive and Plausible?							
		10.3.2 On Optimization and Inverse Control							
	10.4	Outlook							
Bi	bliog	raphy 1	45						
A	A o	ne-dimensional Toy Problem for Regression	55						