

Contents

Preface — v

1	General introduction — 1
2	General classification of surfactants — 5
2.1	Anionic surfactants — 5
2.1.1	Carboxylates — 6
2.1.2	Sulfates — 6
2.1.3	Sulfonates — 7
2.1.4	Isethionates — 8
2.1.5	Taurates — 9
2.1.6	Phosphate-containing anionic surfactants — 9
2.2	Cationic surfactants — 9
2.3	Amphoteric (zwitterionic) surfactants — 11
2.4	Nonionic surfactants — 12
2.4.1	Alcohol ethoxylates — 12
2.4.2	Alkyl phenol ethoxylates — 13
2.4.3	Fatty acid ethoxylates — 13
2.4.4	Sorbitan esters and their ethoxylated derivatives (Spans and Tweens) — 13
2.4.5	Ethoxylated fats and oils — 15
2.4.6	Amine ethoxylates — 15
2.4.7	Amine oxides — 15
2.5	Speciality surfactants — 16
2.5.1	Fluorocarbon and silicone surfactants — 16
2.5.2	Gemini surfactants — 17
2.5.3	Surfactants derived from mono- and polysaccharides — 17
2.5.4	Naturally occurring surfactants — 18
2.5.5	Biosurfactants — 22
2.5.6	Polymeric surfactants — 24
3	Aggregation of surfactants, self-assembly structures, liquid crystalline phases — 29
3.1	Thermodynamics of micellization — 36
3.1.1	Kinetic aspects — 36
3.1.2	Equilibrium aspects: Thermodynamics of micellization — 37
3.2	Enthalpy and entropy of micellization — 39
3.3	Driving force for micelle formation — 40
3.4	Micellization in surfactant mixtures (mixed micelles) — 42

3.5	Surfactant self-assembly — 45
3.5.1	Structure of liquid crystalline phases — 45
3.5.2	Hexagonal phase — 46
3.5.3	Micellar cubic phase — 47
3.5.4	Lamellar phase — 47
3.5.5	Bicontinuous cubic phases — 47
3.5.6	Reversed structures — 47
3.6	Experimental studies of the phase behavior of surfactants — 48
4	Surfactant adsorption at interfaces — 51
4.1	Introduction — 51
4.2	Adsorption of surfactants at the air/liquid (A/L) and liquid/liquid (L/L) interfaces — 52
4.2.1	The Gibbs adsorption isotherm — 53
4.2.2	Equation of state approach — 57
4.2.3	The Langmuir, Szyzskowski and Frumkin equations — 58
4.3	Interfacial tension measurements — 59
4.3.1	The Wilhelmy plate method — 59
4.3.2	The pendent drop method — 60
4.3.3	The Du Nouy's ring method — 61
4.3.4	The drop volume (weight) method — 61
4.3.5	The spinning drop method — 61
4.4	Adsorption of surfactants at the solid/liquid interface — 62
4.4.1	Adsorption of ionic surfactants on hydrophobic surfaces — 64
4.4.2	Adsorption of ionic surfactants on polar surfaces — 67
4.4.3	Adsorption of nonionic surfactants — 69
5	Surfactants as emulsifiers — 73
5.1	Introduction — 73
5.1.1	Nature of the emulsifier — 73
5.1.2	Structure of the system — 74
5.1.3	Breakdown processes in emulsions — 74
5.2	Physical chemistry of emulsion systems — 77
5.2.1	The interface (Gibbs dividing line) — 77
5.2.2	Thermodynamics of emulsion formation and breakdown — 78
5.2.3	Interaction energies (forces) between emulsion droplets and their combinations — 80
5.3	Mechanism of emulsification — 85
5.3.1	Methods of emulsification — 86
5.3.2	Role of surfactants in emulsion formation — 88
5.3.3	Role of surfactants in droplet deformation — 89
5.4	Selection of emulsifiers — 92

5.4.1	The Hydrophilic-Lipophile Balance (HLB) concept — 92
5.4.2	The Phase Inversion Temperature (PIT) concept — 95
5.5	Stabilization of emulsions — 97
5.5.1	Creaming or sedimentation and its prevention — 97
5.5.2	Flocculation of emulsions and its prevention — 98
5.5.3	Ostwald ripening and its reduction — 99
5.5.4	Emulsion coalescence and its prevention — 100
6	Surfactants as dispersants and stabilization of suspensions — 103
6.1	Introduction — 103
6.2	Role of surfactants in preparation of solid/liquid dispersions (suspensions) — 103
6.2.1	Role of surfactants in condensation methods. Nucleation and growth — 104
6.2.2	Emulsion polymerization — 105
6.2.3	Dispersion polymerization — 107
6.2.4	Role of surfactants in dispersion methods — 109
6.3	Assessment of wettability of powders — 115
6.3.1	Sinking time, submersion or immersion test — 115
6.3.2	Measurement of contact angles of liquids and surfactant solutions on powders — 116
6.3.3	List of wetting agents for hydrophobic solids in water — 116
6.3.4	Stabilization of suspensions using surfactants — 118
7	Surfactants for foam stabilization — 121
7.1	Introduction — 121
7.2	Foam preparation — 121
7.3	Foam structure — 122
7.4	Classification of foam stability — 123
7.4.1	Drainage and thinning of foam films — 124
7.4.2	Theories of foam stability — 125
7.5	Foam inhibitors — 129
7.5.1	Chemical inhibitors that lower viscosity and increase drainage — 130
7.5.2	Solubilized chemicals which cause antifoaming — 130
7.5.3	Droplets and oil lenses which cause antifoaming and defoaming — 130
7.5.4	Surface tension gradients (induced by antifoamers) — 131
7.5.5	Hydrophobic particles as antifoamers — 131
7.5.6	Mixtures of hydrophobic particles and oils as antifoamers — 132
7.6	Assessment of foam formation and stability — 132
7.6.1	Efficiency and effectiveness of a foaming surfactant — 133

8	Surfactants in nanoemulsions — 135
8.1	Introduction — 135
8.2	Fundamental principles of emulsification — 137
8.2.1	Methods of emulsification and the role of surfactants — 138
8.3	Preparation of nanoemulsions — 139
8.3.1	Use of high pressure homogenizers — 139
8.3.2	Phase inversion principle methods (low energy emulsification) — 140
8.4	Steric stabilization and the role of the adsorbed layer thickness — 141
8.5	Ostwald Ripening — 144
8.6	Examples of nanoemulsions — 145
9	Surfactants in microemulsions — 153
9.1	Introduction — 153
9.2	Thermodynamic definition of microemulsions — 154
9.3	Description of microemulsions using phase diagrams — 155
9.4	Thermodynamic theory of microemulsion formation — 157
9.5	Characterization of microemulsions using scattering techniques — 159
9.5.1	Time average (static) light scattering — 159
9.5.2	Dynamic light scattering (photon correlation spectroscopy, PCS) — 162
9.6	Characterization of microemulsions using conductivity — 163
9.7	NMR measurements — 165
9.8	Formulation of microemulsions — 165
10	Surfactants as wetting agents — 169
10.1	Introduction — 169
10.2	The concept of contact angle — 170
10.3	Adhesion tension — 172
10.4	Work of adhesion W_a — 172
10.5	Work of cohesion — 172
10.6	The spreading coefficient S — 173
10.7	Contact angle hysteresis — 173
10.8	Critical surface tension of wetting — 174
10.9	Effect of surfactant adsorption — 175
10.10	Measurement of contact angles — 176
11	Industrial applications of surfactants — 179
11.1	Surfactants in the home, personal care and cosmetics — 179
11.1.1	Shaving formulations — 184
11.1.2	Bar soaps — 185
11.1.3	Liquid hand soaps — 185

11.1.4	Bath oils — 186
11.1.5	Foam (or bubble) baths — 186
11.1.6	After bath preparations — 186
11.1.7	Skin care products — 186
11.1.8	Hair care formulations — 188
11.1.9	Sunscreens — 191
11.1.10	Make-up products — 193
11.2	Surfactants in pharmacy — 196
11.2.1	Surface active drugs — 197
11.2.2	Naturally occurring micelle-forming systems — 198
11.2.3	Biological implications of the presence of surfactants in pharmaceutical formulations — 200
11.2.4	Solubilized systems — 201
11.2.5	Pharmaceutical aspects of solubilization — 202
11.3	Surfactants in agrochemicals — 202
11.4	Surfactants in paints and coatings — 212
11.5	Surfactants in detergents — 217
Index	221