Contents

1	Inter	rest, Coupons and Yields	1
	1.1	Time Value of Money	1
	1.2	Interest on Debt, Day-Count Conventions	2
	1.3	Accrued Interest	5
	1.4	Floating Rates, Libor and Euribor	6
	1.5	Bond Yields and the Term Structure of Interest Rates	8
	1.6	Duration and Convexity	10
	1.7	Key Takeaways, References and Exercises	13
2	Fina	ncial Products	15
	2.1	Bonds, Stocks and Commodities	15
	2.2	Derivatives	19
	2.3	Forwards and Futures	20
	2.4	Swaps	22
	2.5	Options	23
	2.6	Key Takeaways, References and Exercises	25
3	The	No-Arbitrage Principle	27
	3.1	Introduction	27
	3.2	Pricing Forward Contracts and Managing Counterparty Risk	29
	3.3	Bootstrapping	31
	3.4	Forward Rate Agreements (FRAs)	33
	3.5	Key Takeaways, References and Exercises	34
4	Euro	opean and American Options	37
	4.1	Put-Call Parity, Bounds for Option Prices	38
	4.2	Some Option Trading Strategies	40
	4.3	American Options	41
	4.4	Key Takeaways, References and Exercises	43
5	The	Binomial Option Pricing Model	47
	5.1	A One-Period Option Pricing Model	47
	5.2	The Principle of Risk-Neutral Valuation	49
	5.3	The Cox-Ross-Rubinstein Model	50
	5.4	Key Takeaways, References and Exercises	53

viii Contents

6	The I	Black-Scholes Model	55		
	6.1	Brownian Motion and Itô's Lemma	56		
	6.2	The Black-Scholes Model	59		
	6.3	Key Takeaways, References and Exercises	61		
7	The Black-Scholes Formula				
	7.1	The Black-Scholes formula from a PDE	63		
	7.2	The Black-Scholes Formula as Limit in the CRR-Model	65		
	7.3	Discussion of the Formula, Hedging	68		
	7.4	Delta-Hedging and the 'Greeks'	70		
	7.5	Does Hedging Work?	71		
	7.6	Key Takeaways, References and Exercises	73		
8	Stock-Price Models				
	8.1	Shortcomings of the Black-Scholes Model: Skewness,			
		Kurtosis and Volatility Smiles	77		
	8.2	The Dupire Model	79		
	8.3	The Heston Model	80		
	8.4	Price Jumps and the Merton Model	85		
	8.5	Key Takeaways, References and Exercises	88		
9	Interest Rate Models				
	9.1	Caps, Floors and Swaptions	91		
	9.2	Short-Rate Models	93		
	9.3	The Hull-White Model: a Short-Rate Model	94		
	9.4	Market Models	98		
	9.5	Key Takeaways, References and Exercises	100		
10	Num	erical Methods	103		
	10.1	Binomial Trees	103		
	10.2	Trinomial Trees	106		
	10.3	Finite Differences and Finite Elements	107		
	10.4	Pricing with the Characteristic Function	111		
	10.5	Numerical Algorithms in UnRisk	113		
	10.6	Key Takeaways, References and Exercises	113		
11	Simulation Methods				
	11.1	The Monte Carlo Method	117		
	11.2	Quasi-Monte Carlo (QMC) Methods	124		
	11.3				
	11.4	Key Takeaways, References and Exercises	128		
12	Calibrating Models – Inverse Problems				
	12.1	Fitting Yield Curves in the Hull-White Model	134		
	12.2	Calibrating the Black-Karasinski Model	137		
	12.3	Local Volatility and the Dupire Model	137		
	12.4	Calibrating the Heston Model or the LIBOR-Market Model	140		
	12.5	Key Takeaways, References and Exercises	140		

13	Case	Studies: Exotic Derivatives	143
10	13.1	Barrier Options and (Reverse) Convertibles	143
	13.2	Bermudan Bonds – To Call or Not To Call?	146
	13.3	Bermudan Callable Snowball Floaters	147
	13.4	More Examples of Exotic Interest Rate Derivatives	148
	13.5	Model Risk in Interest Rate Models	149
	13.6	Equity Basket Instruments	150
	13.7	Key Takeaways, References and Exercises	151
14	Portfolio Optimization		155
	14.1	Mean-Variance Optimization	155
	14.2	Risk Measures and Utility Theory	164
	14.3	Portfolio Optimization in Continuous Time	166
	14.4	Key Takeaways, References and Exercises	167
15	Introduction to Credit Risk Models		171
	15.1	Introduction	171
	15.2	Credit Ratings	172
	15.3	Structural Models	174
	15.4	Reduced-Form Models	178
	15.5	Credit Derivatives and Dependent Defaults	180
	15.6	Key Takeaways, References and Exercises	183
Ref	erence	·s	185
Ind	0v		190