Contents

1	Ran	dom W	/alks, a Good Place to Begin	1
	1.1	Neares	st Neighbor Random Walks on $\mathbb Z$	1
		1.1.1	Distribution at Time $n \dots \dots \dots \dots$	2
		1.1.2	Passage Times via the Reflection Principle	3
		1.1.3	Some Related Computations	4
		1.1.4	Time of First Return	7
		1.1.5	Passage Times via Functional Equations	8
	1.2	Recur	rence Properties of Random Walks	9
		1.2.1	Random Walks on \mathbb{Z}^d	9
		1.2.2	An Elementary Recurrence Criterion	10
		1.2.3	Recurrence of Symmetric Random Walk in \mathbb{Z}^2	12
		1.2.4	Transience in $\mathbb{Z}^{\tilde{3}}$	14
	1.3	Exerci	ises	17
2	Doel	blin's T	Theory for Markov Chains	25
	2.1		Generalities	25
		2.1.1	Existence of Markov Chains	26
		2.1.2	Transition Probabilities & Probability Vectors	27
		2.1.3	Transition Probabilities and Functions	28
		2.1.4	The Markov Property	30
	2.2	Doebl	lin's Theory	30
		2.2.1	Doeblin's Basic Theorem	30
		2.2.2	A Couple of Extensions	33
	2.3	Eleme	ents of Ergodic Theory	35
		2.3.1	The Mean Ergodic Theorem	36
		2.3.2	Return Times	37
		2.3.3	Identification of π	41
	2.4	Exerci	ises	43
3	Stat	ionary	Probabilities	49
	3.1		ification of States	49
		3.1.1	Classification, Recurrence, and Transience	50

xiii

xiv Contents

		3.1.2	Criteria for Recurrence and Transience		
		3.1.3	Periodicity	5	
	3.2	Compu	station of Stationary Probabilities	8	
		3.2.1	Preliminary Results	8	
		3.2.2	Computations via Linear Algebra	9	
	3.3	Wilson	's Algorithm and Kirchhoff's Formula 6	4	
		3.3.1	Spanning Trees and Wilson Runs 64	4	
		3.3.2	Wilson's Algorithm 6.	5	
		3.3.3	Kirchhoff's Matrix Tree Theorem 6	8	
	3.4	Exercis	ses	9	
4	Mor	e Abou	t the Ergodic Properties of Markov Chains	3	
	4.1		c Theory Without Doeblin	4	
		4.1.1	Convergence of Matrices	4	
		4.1.2	Abel Convergence	5	
		4.1.3	Structure of Stationary Distributions	8	
		4.1.4	A Digression About Moments of Return Times 8	0	
		4,1.5	A Small Improvement	2	
		4.1.6	The Mean Ergodic Theorem Again	4	
		4.1.7	A Refinement in the Aperiodic Case	5	
		4.1.8	Periodic Structure	0	
	4.2	Exerci	ses	1	
5	Mai	rkov Pro	ocesses in Continuous Time	9	
	5.1	Poisso	n Processes	9	
		5.1.1	The Simple Poisson Process	9	
		5.1.2	Compound Poisson Processes on \mathbb{Z}^d 10	2	
	5.2 Markov Processes with Bounded Rates				
		5.2.1	Basic Construction	5	
		5.2.2	An Alternative Construction	8	
		5.2.3	Distribution of Jumps and Jump Times	1	
		5.2.4	Kolmogorov's Forward and Backward Equations 11	2	
	5.3	Unbou	unded Rates	4	
		5.3.1	Explosion	4	
		5.3.2	Criteria for Non-explosion or Explosion	C	
		5.3.3	What to Do when Explosion Occurs	2	
	5.4	Ergod	ic Properties	2	
		5.4.1	Classification of States	23	
		5.4.2	Stationary Measures and Limit Theorems	26	
		5.4.3	Interpreting and Computing $\hat{\pi}_{ii}$	29	
	5.5		ises	C	
6	Rev	ersible	Markov Processes	37	
-	6.1		sible Markov Chains	38	
		6.1.1	Reversibility from Invariance	38	
		6.1.2	Measurements in Quadratic Mean	39	

Contents

		6.1.3	The Spectral Gap	141
		6.1.4	Reversibility and Periodicity	143
		6.1.5	Relation to Convergence in Variation	144
	6.2	Dirich	llet Forms and Estimation of β	145
		6.2.1	The Dirichlet Form and Poincaré's Inequality	146
		6.2.2	Estimating β_+	148
		6.2.3	Estimating β_{-}	150
	6.3	Revers	sible Markov Processes in Continuous Time	151
		6.3.1	Criterion for Reversibility	151
		6.3.2	Convergence in $L^2(\hat{\pi})$ for Bounded Rates	152
		6.3.3	$L^2(\hat{\pi})$ -Convergence Rate in General	154
		6.3.4	Estimating λ	157
	6.4	Gibbs	States and Glauber Dynamics	157
		6.4.1	Formulation	158
		6.4.2	The Dirichlet Form	159
	6.5	Simul	ated Annealing	162
		6.5.1	The Algorithm	163
		6.5.2	Construction of the Transition Probabilities	164
		6.5.3	Description of the Markov Process	166
		6.5.4	Choosing a Cooling Schedule	166
		6.5.5	Small Improvements	169
	6.6	Exerci	ises	170
7	A M	linimal	Introduction to Measure Theory	179
-	7.1	•		179
		7.1.1	Measure Spaces	179
		7.1.2	Some Consequences of Countable Additivity	181
		7.1.3	Generating σ-Algebras	182
		7.1.4	Measurable Functions	183
		7.1.5	Lebesgue Integration	184
		7.1.6	Stability Properties of Lebesgue Integration	186
		7.1.7	Lebesgue Integration on Countable Spaces	188
		7.1.8	Fubini's Theorem	190
	7.2		ling Probability	192
		7.2.1	Modeling Infinitely Many Tosses of a Fair Coin	193
	7.3		endent Random Variables	194
		7.3.1	Existence of Lots of Independent Random Variables	194
	7.4		itional Probabilities and Expectations	196
		7.4.1	Conditioning with Respect to Random Variables	198
D .	e			100
Ke	ferenc	ces		199
T 3				201

7