Contents

Part I Finding One's Way in a World of Algorithms

1	Algor	rithms, An Historical Perspective	3	
	Giorgio Ausiello			
	1.1	Introduction	3	
	1.2	Teaching Algorithms in Ancient Babylonia and Egypt	4	
	1.3	Euclid's Algorithm	8	
	1.4	Al-Khwarizmi and the Origin of the Word Algorithm	10	
	1.5	Leonardo Fibonacci and Commercial Computing	13	
	1.6	Recreational Algorithms: Between Magic and Games	17	
	1.7	Algorithms, Reasoning and Computers	21	
	1.8	Conclusion	25	
	1.9	Bibliographic Notes	26	
2	How	to Design an Algorithm	27	
	Rosse	ella Petreschi		
	2.1	Introduction	27	
	2.2	Graphs	28	
		2.2.1 The Pervasiveness of Graphs	28	
		2.2.2 The Origin of Graph Theory	32	
		2.2.3 The Topological Ordering Problem	35	
	2.3	Algorithmic Techniques	36	
		2.3.1 The Backtrack Technique	37	
		2.3.2 The Greedy Technique	42	
	2.4	How to Measure the Goodness of an Algorithm	49	
	2.5	The Design	52	
	2.6	Bibliographic Notes	57	
3	The (One Million Dollars Problem	59	
	Alessandro Panconesi			
	3.1	Paris, August 8, 1900	61	
	3.2	"Calculemus!"	65	

ix

x Contents

	3.3	Finding Is Hard: Checking Is Easy	67
	3.4	The Class NP	70
	3.5	Universality	74
	3.6	The Class P	74
	3.7	A Surprising Letter	76
	3.8	The Driving Force of Scientific Discovery	80
	3.9	Bibliographic Notes	80
Par	t II T	The Difficult Simplicity of Daily Life	
4	The (Quest for the Shortest Route	85
		1 Demetrescu and Giuseppe F. Italiano	
	4.1	Introduction	85
	4.2	The Mathematisch Centrum	88
	4.3	Shortest Paths in Graphs	89
	4.4	Nature and Its Algorithms	90
	4.5	A Simple Idea	91
	4.6	Time Is a Tyrant	94
	4.7	How to Set Your Priorities	96
		4.7.1 The Heap Data Structure	98
	4.8	The Humble Programmer	100
	4.9	Still an Open Challenge	101
		4.9.1 The ALT Algorithm by Goldberg and Harrelson	103
	4.10	Bibliographic Notes	105
5	Web	Search	107
	Paolo	Ferragina and Rossano Venturini	
	5.1	The Prologue	107
	5.2	Internet and Web Graphs	108
	5.3	Browsers and a Difficult Problem	114
	5.4	Search Engines	118
		5.4.1 Crawling	120
		5.4.2 The Web Graph in More Detail	122
		5.4.3 Indexing and Searching	124
		5.4.4 Evaluating the Relevance of a Page	127
		5.4.5 Two Ranking Algorithms: PageRank and HITS	129
		5.4.6 On Other Search Engine Functionalities	133
	5.5	Towards Semantic Searches	134
	5.6	Bibliographic Notes	137
6		rithms for Secure Communication	139
		rto Marchetti-Spaccamela	
	6.1	Introduction	139
	6.2	A Brief History of Cryptography	141
		6.2.1 Monoalphabetic Substitution Codes	141

Contents xi

		****** * * * * * * * * * * * * * * * *	143
		6.2.3 The Enigma Machine	144
	6.3	Cryptographic Codes and Secret Keys	145
		6.3.1 How to Encode a Long Message Using	
		an Integer Function	146
		6.3.2 Cryptanalysis and Robustness	
		of a Cryptographic Protocol	147
	6.4		151
		J = J1 & 1 J	151
		J J1	152
	6.5	•	153
		6.5.1 Modular Arithmetic	154
		6.5.2 Diffie and Hellman's Algorithm	
		for Establishing a Secret Key	155
	6.6	Public-Key Cryptography	157
		6.6.1 The RSA Algorithm	158
	6.7	Digital Signatures and Other Useful Applications	
		, , , , , , , , , , , , , , , , , , , ,	161
		6.7.1 How Public-Key Cryptography Allows	
			162
	6.8	Bibliographic Notes	165
7	Algo	rithmics for the Life Sciences	167
•		nele Giancarlo	
	7.1		167
	7.2		170
	7.3	Algorithmic Paradigms: Methodological Contributions	
		· · · · · · · · · · · · · · · · · · ·	174
		7.3.1 String Algorithmics: Identification	
			175
		7.3.2 Kolmogorov Algorithmic Complexity:	
			178
		7.3.3 Graph Algorithmics I: Microarrays and Gene	
			179
		7.3.4 Graph Algorithmics II: From Single	
			182
	7.4	Future Challenges: The Fundamental Laws of Biology	
		<u> </u>	184
	7.5		185
8	The S	Shortest Walk to Watch TV	187
		zio Rossi, Antonio Sassano, and Stefano Smriglio	
	8.1	· · · · · · · · · · · · · · · · · · ·	187
	8.2		189
			189
			190

xii Contents

		8.2.3 Model for the Digital Coverage Assessment	191
			194
	8.3	The Role of Transmission Delays	194
	8.4	An Algorithm for Optimizing Transmission Delays	199
		8.4.1 From Inconsistent TP Sets to Inconsistent	
		Systems of Inequalities	200
		8.4.2 The Difference Constraints Graph	202
			203
	8.5		205
	8.6	Bibliographic Notes	205
9	Algoi	rithms for Auctions and Games	207
	Vince	enzo Bonifaci and Stefano Leonardi	
	9.1		207
	9.2	Games and Solution Concepts	209
		9.2.1 Prisoner's Dilemma	209
		9.2.2 Coordination Games	211
		9.2.3 Randomized Strategies	212
		9.2.4 Hawks and Doves	214
	9.3	Computational Aspects of Game Theory	216
		9.3.1 Zero-Sum Games and Linear Optimization	216
		9.3.2 Fixed-Points: Nash's Theorem and Sperner's Lemma	218
		9.3.3 Mixed Nash Equilibria in Non-zero-Sum Games	221
	9.4	Inefficiencies	222
		9.4.1 The Tragedy of the Commons	222
		9.4.2 Routing Games	224
	9.5	Mechanism Design and Online Auctions	226
		9.5.1 The Vickrey Auction	226
		9.5.2 Vickrey–Clarke–Groves Mechanisms	228
		9.5.3 Computational Aspects of Mechanism Design	230
	9.6	Price-Setting Mechanisms and Competitive Equilibria	233
	9.7	Bibliographic Notes	234
10		1 0	235
	Ricca	ardo Silvestri	
	10.1		235
	10.2	Bibliographic Notes	250
Ref	erence	es	251