Contents

D-	ort A	Fundamentals of Crystal Growth and Defect Formation	
Pd	II L A	rundamentals of crystal drowth and beleet Formation	
1	Crysta	al Growth Techniques and Characterization: An Overview	
	Govin	dhan Dhanaraj, Kullaiah Byrappa, Vishwanath (Vish) Prasad,	
	Micha	el Dudley	3
	1.1	Historical Developments	3
	1.2	Theories of Crystal Growth	4
	1.3	Crystal Growth Techniques	6
	1.4	Crystal Defects and Characterization	11
	Refer	ences	15
2	Nucle	ation at Surfaces	
	Ivan \	'. Markov	17
	2.1	Equilibrium Crystal-Ambient Phase	18
	2.2	Work for Nucleus Formation	24
	2.3	Rate of Nucleation	28
	2.4	Saturation Nucleus Density	35
	2.5	Second-Layer Nucleation in Homoepitaxy	38
	2.6	Mechanism of Clustering in Heteroepitaxy	43
	2.7	Effect of Surfactants on Nucleation	45
	2.8	Conclusions and Outlook	48
	Refer	ences	48
3	Morn	hology of Crystals Grown from Solutions	
,		esco Abbona, Dino Aquilano	53
	3.1	Equilibrium Shape	55
	3.2	The Theoretical Growth Shape	64
	3.3	Factors Influencing the Crystal Habit	71
	3.4	Surface Structure	72
	3.5	Crystal Defects	73
	3.6	Supersaturation – Growth Kinetics	73
	3.7	Solvent	75
	3.8	Impurities	78
	3.9	Other Factors	84
	3.10	Evolution of Crystal Habit	85
	3.11	A Short Conclusion	86
	3.A	Appendix	86
		ences	87

List of Abbreviations XXXI

		eration and Propagation of Defects During Crystal Growth
	Helm	ut Klapper
	4.1	Overview
	4.2	Inclusions
	4.3	Striations and Growth Sectors
	4.4	Dislocations
	4.5	Twinning
	4.6	Perfection of Crystals Grown Rapidly from Solution
	Refe	rences
5	Sing	le Crystals Grown Under Unconstrained Conditions
	Ichir	Sunagawa
	5.1	Background
	5.2	Smooth and Rough Interfaces: Growth Mechanism and Morphology
	5.3	Surface Microtopography
	5.4	Growth Forms of Polyhedral Crystals
	5.5	Internal Morphology
	5.6	Perfection of Single Crystals
	Refe	ences
	6.2 6.3 6.4 6.5 6.6	Point Defects Dislocations Second-Phase Particles Faceting Twinning Summary
Ρā	art B	Crystal Growth from Melt Techniques
P a	Refe	Crystal Growth from Melt Techniques um Phosphide: Crystal Growth and Defect Control
	Reference Refere	Crystal Growth from Melt Techniques um Phosphide: Crystal Growth and Defect Control pplying Steady Magnetic Fields
	Reference Refere	Crystal Growth from Melt Techniques um Phosphide: Crystal Growth and Defect Control pplying Steady Magnetic Fields of F. Bliss
	Reference Refere	Crystal Growth from Melt Techniques um Phosphide: Crystal Growth and Defect Control pplying Steady Magnetic Fields if F. Bliss
	Reference Refere	Crystal Growth from Melt Techniques um Phosphide: Crystal Growth and Defect Control pplying Steady Magnetic Fields d F. Bliss Historical Overview
	Reference Refere	Crystal Growth from Melt Techniques Im Phosphide: Crystal Growth and Defect Control pplying Steady Magnetic Fields If F. Bliss Historical Overview Magnetic Liquid-Encapsulated Growth Magnetic Field Interactions with the Melt
	Reference Refere	Crystal Growth from Melt Techniques Im Phosphide: Crystal Growth and Defect Control pplying Steady Magnetic Fields If F. Bliss Historical Overview Magnetic Liquid-Encapsulated Growth Magnetic Field Interactions with the Melt Dislocation Density
	Reference Refere	Crystal Growth from Melt Techniques Im Phosphide: Crystal Growth and Defect Control pplying Steady Magnetic Fields If F. Bliss Historical Overview Magnetic Liquid-Encapsulated Growth Magnetic Field Interactions with the Melt Dislocation Density Magnetic Field Effects on Impurity Segregation
	Reference Refere	Crystal Growth from Melt Techniques Im Phosphide: Crystal Growth and Defect Control pplying Steady Magnetic Fields If F. Bliss Historical Overview Magnetic Liquid-Encapsulated Growth Magnetic Field Interactions with the Melt Dislocation Density

8		ralski Silicon Single Crystals for Semiconductor	
		olar Cell Applications	
	Koichi	Kakimoto	231
	8.1	Silicon Single Crystals for LSIs and Solar Applications	232
	8.2	Control of Crystal Defects in Czochralski Silicon	237
	8.3	Growth and Characterization of Silicon Multicrystal	
		for Solar Cell Applications	239
	8.4	Summary	240
	Refere	ences	241
9	Czoch	ralski Growth of Oxide Photorefractive Crystals	
		o Diéguez, Jose Luis Plaza, Mohan D. Aggarwal, Ashok K. Batra	245
	9.1	Background	246
	9.2	Crystal Growth	246
	9.3	Design and Development of Czochralski Growth System	247
	9.4	Growth of Lithium Niobate Crystals and Its Characteristics	252
	9.5	Other Oxide Photorefractive Crystals	262
	9.6	Growth of Sillenite Crystals and Its Characteristics	264
	9.7	Conclusions	273
	кетеге	ences	273
10	Bulk (Crystal Growth of Ternary III–V Semiconductors	
		5. Dutta	281
	10.1	III-V Ternary Semiconductors	282
	10.2	Need for Ternary Substrates	283
	10.3	Criteria for Device-Grade Ternary Substrates	284
	10.4	Introduction to Bridgman Crystal Growth Techniques	286
	10.5	Overview of III-V Binary Crystal Growth Technologies	292
	10.6	Phase Equilibria for Ternary Compounds	300
	10.7		302
		Alloy Segregation in Ternary Semiconductors	
	10.8	Crack Formation in Ternary Crystals	304
	10.9	Single-Crystalline Ternary Seed Generation Processes	308
		Solute Feeding Processes for Homogeneous Alloy Growth	311
		Role of Melt-Solid Interface Shapes	318
	10.12	Conclusion	321
	Refere	nces	321
11	Growi	th and Characterization	
		timony-Based Narrow-Bandgap III–V Semiconductor Crystals	
		frared Detector Applications	
		(. Dixit, Handady L. Bhat	327
	11.1	Importance of Antimony-Based Semiconductors	329
		·	
	11.2	Phase Diagrams	330
	11.3	Crystal Structure and Bonding	331
	11.4	Material Synthesis and Purification	333

	11.5	Bulk Growth of InSb	334
	11.6	Structural Properties of InSb, InAs _x Sb _{1-x} , and InBi _x Sb _{1-x}	340
	11.7	Physical Properties of InSb, InAs _x Sb _{1-x} , and InBi _x Sb _{1-x}	346
	11.8	Applications	357
	11.9	Concluding Remarks and Future Outlook	359
		ences	360
4.7	C	I Crowth of Ovides by Outical Floating Jame Technique	
12	_	Il Growth of Oxides by Optical Floating Zone Technique	267
		a A. Dabkowska, Antoni B. Dabkowski	367
	12.1	Historical Notes	367
	12.2	Optical Floating Zone Technique – Application for Oxides	368
	12.3	Optical Floating Zone	
		and Traveling Solvent Crystal Growth Techniques	369
	12.4	Advantages and Limitations of the Floating Zone Techniques	370
	12.5	Optical Floating Zone Furnaces	371
	12.6	Experimental Details of Ceramics and Rod Preparation for OFZT	372
	12.7	Stable Growth of Congruently and Incongruently Melting Oxides	373
	12.8	Constitutional Supercooling and Crystallization Front Stability	375
	12.9	Crystal Growth Termination and Cooling	377
	12.10	Characterization of Crystals Grown by the OFZ Technique	377
	12.11	Determination of Defects in Crystals – The Experimental Approach	380
	12.12	Details of Conditions for Growth of Selected Oxide Single Crystals	
		by OFZ and TSFZ Methods	383
	12.13	Conclusions	386
		ences	386
12	Lacor	-Heated Pedestal Growth of Oxide Fibers	
13			393
		Ilo R.B. Andreeta, Antonio Carlos Hernandes	
	13.1	Fiber-Pulling Research	394
	13.2	The Laser-Heated Pedestal Growth Technique	399
	13.3	Fundamentals	402
	13.4	Fiber Growth Aspects	409
	13.5	Conclusions	418
	Refere	ences	419
14	Synth	esis of Refractory Materials by Skull Melting Technique	
		eslav V. Osiko, Mikhail A. Borik, Elena E. Lomonova	433
	14.1	Overview	433
	14.2	Techniques for Growth of Single Crystals in a Cold Crucible	435
	14.3	Growth of Single Crystals Based on Zirconium Dioxide	443
	14.4	Glass Synthesis by Skull Melting in a Cold Crucible	465
	14.5	Conclusion	469
	Refere		469
	ACICIE	111 53	400

15	_	l Growth of Laser Host Fluorides and Oxides	
		un Li, Jun Xu	479
	15.1	·· ,	479
		Laser Crystal Defects	487
	15.3	Crystal Growth Techniques Characterization	50:
	Refere	nces	503
	Chara.	ad Carried Capride	
16	-	ed Crystal Growth	
		A. Tatartchenko	509
	16.1	Definitions and Scope of Discussion: SCG by CST	510
	16.2	DSC — Basis of SCG by CST	512
	16.3	SA and SCG by CZT	517
	16.4	SA and SCG by VT	519
	16.5	SA and SCG by FZT	522
	16.6	TPS Capillary Shaping	522
	16.7	TPS Sapphire Growth	539
	16.8	TPS Silicon Growth	546
	16.9	TPS Metals Growth	553
	16.10	TPS Peculiarities	557
	Refere	nces	552
Pa	irt C :	Solution Growth of Crystals	
	Bulk !	Single Crystals Grown from Solution on Earth	
	Bulk !	Single Crystals Grown from Solution on Earth n Microgravity	
	Bulk ! and i	Single Crystals Grown from Solution on Earth n Microgravity n D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn,	F.F.(
	Bulk ! and i Mohal	Single Crystals Grown from Solution on Earth n Microgravity n D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, d O. Frazier	
	Bulk ! and i Mohai Donal	Single Crystals Grown from Solution on Earth n Microgravity n D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, d O. Frazier	563
	Bulk ! and i Mohai Donal 17.1 17.2	Single Crystals Grown from Solution on Earth n Microgravity n D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, d O. Frazier Crystallization: Nucleation and Growth Kinetics	56: 56:
	Bulk s and in Mohal Donal 17.1 17.2 17.3	Single Crystals Grown from Solution on Earth n Microgravity n D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, d O. Frazier Crystallization: Nucleation and Growth Kinetics Low-Temperature Solution Growth Solution Growth by Temperature Lowering	56: 56: 56:
	Bulk 9 and in Mohan 17.1 17.2 17.3 17.4	Single Crystals Grown from Solution on Earth In Microgravity In D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, Id O. Frazier Crystallization: Nucleation and Growth Kinetics Low-Temperature Solution Growth Solution Growth by Temperature Lowering Triglycine Sulfate Crystal Growth: A Case Study	563 566 567
	Bulk 9 and ii Mohal 17.1 17.2 17.3 17.4 17.5	Single Crystals Grown from Solution on Earth In Microgravity In D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, Id O. Frazier	562 563 563 574 583
	Bulk 9 and ii Mohad Donal 17.1 17.2 17.3 17.4 17.5 17.6	Single Crystals Grown from Solution on Earth In Microgravity In D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, Id O. Frazier	560 560 560 574 580 590
	Bulk 9 and i Mohal 17.1 17.2 17.3 17.4 17.5 17.6 17.7	Single Crystals Grown from Solution on Earth In Microgravity In D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, Id O. Frazier Crystallization: Nucleation and Growth Kinetics Low-Temperature Solution Growth Solution Growth by Temperature Lowering Triglycine Sulfate Crystal Growth: A Case Study Solution Growth of Triglycine Sulfate Crystals in Microgravity Protein Crystal Growth Concluding Remarks	562 566 567 578 582 592
	Bulk 9 and i Mohal 17.1 17.2 17.3 17.4 17.5 17.6 17.7	Single Crystals Grown from Solution on Earth In Microgravity In D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, Id O. Frazier	562 566 567 578 582 592
17	Bulk 9 and in Mohan Donal 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Refere	Single Crystals Grown from Solution on Earth In Microgravity In D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, Id O. Frazier	562 566 567 578 582 592
17	Bulk 9 and in Mohan 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Refere	Single Crystals Grown from Solution on Earth In Microgravity In D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, Id O. Frazier	563 566 567 577 583 597 597
17	Bulk 9 and ii Mohal 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Refere	Single Crystals Grown from Solution on Earth In Microgravity In D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, Id O. Frazier	563 566 574 583 593 594
17	Bulk 9 and in Mohan Donal 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Refere Hydro Kullaid 18.1	Single Crystals Grown from Solution on Earth In Microgravity In D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, Id O. Frazier	56: 56: 57: 58: 59: 59: 59: 60:
17	Bulk ! and ii Mohai Donal 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Refere Kullai 18.1 18.2	Single Crystals Grown from Solution on Earth In Microgravity In D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, Id O. Frazier	563 563 574 583 594 594 594 603 600
17	Bulk 9 and in Mohan Donal 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Refere Hydro Kullaid 18.1	Single Crystals Grown from Solution on Earth In Microgravity In D. Aggarwal, Ashok K. Batra, Ravindra B. Lal, Benjamin G. Penn, Id O. Frazier	559 560 560 574 594 594 600 601 621

Part D Crystal Growth from Vapor

23	Grow	th and Characterization of Silicon Carbide Crystals	
	Govin	dhan Dhanaraj, Balaji Raghothamachar, Michael Dudley	797
	23.1	Silicon Carbide – Background and History	797
	23.2	Vapor Growth	799
	23.3	High-Temperature Solution Growth	801
	23.4	Industrial Bulk Growth by Seed Sublimation	802
	23.5	Structural Defects and Their Configurations	805
	23.6	Concluding Remarks	816
	Refere	ences	817
24	AIN B	ulk Crystal Growth by Physical Vapor Transport	
- '		I Dalmau, Zlatko Sitar	821
	24.1	PVT Crystal Growth	822
	24.2	High-Temperature Materials Compatibility	825
	24.3	Self-Seeded Growth of AIN Bulk Crystals	827
	24.4	Seeded Growth of AIN Bulk Crystals	829
	24.5	Characterization of High-Quality Bulk Crystals	832
	24.6	Conclusions and Outlook	839
		ences	839
	_		
25		th of Single-Crystal Organic Semiconductors	
		ian Kloc, Theo Siegrist, Jens Pflaum	845
	25.1	Basics	845
	25.2	Theory of Nucleation and Crystal Growth	847
	25.3	Organic Materials of Interest for Semiconducting Single Crystals	848
	25.4	Pregrowth Purification	850
	25.5	Crystal Growth	854
	25.6	Quality of Organic Semiconducting Single Crystals	862
	25.7	Organic Single-Crystalline Field-Effect Transistors	863
	25.8	Conclusions	864
	Refere	ences	865
26	Grow	th of III-Nitrides with Halide Vapor Phase Epitaxy (HVPE)	
	Carl H	emmingsson, Bo Monemar, Yoshinao Kumagai, Akinori Koukitu	869
	26.1	Growth Chemistry and Thermodynamics	869
	26.2	HVPE Growth Equipment	872
	26.3	Substrates and Templates for Bulk GaN Growth	875
	26.4	Substrate Removal Techniques	879
	26.5	Doping Techniques for GaN in HVPE	882
	26.6	Defect Densities, Dislocations, and Residual Impurities	883
	26.7	Some Important Properties of HVPE-Grown Bulk GaN Material	887
	26.8	Growth of AIN by HVPE: Some Preliminary Results	888
	26.9	Growth of InN by HVPE: Some Preliminary Results	890
		ences	891

	Rama	samy Dhanasekaran	897
	27.1	Classifications of Vapor Growth	899
	27.2	Chemical Vapor Transport – Transport Kinetics	901
	27.3	Thermodynamic Considerations	905
	27.4	Growth of II–VI Compound Semiconductors by CVT	912
	27.5	Growth of Nanomaterial from Vapor Phase	916
	27.6	Growth of I-III-VI ₂ Compounds	917
	27.7	Growth of GaN by VPE	925
	27.8	Conclusion	929
		ences	930
	neier		730
D:	ort F	Epitaxial Growth and Thin Films	
ГС		Lpitaxiai diowtii and iiiii iiiiis	
28	Fnita	xial Growth of Silicon Carbide by Chemical Vapor Deposition	
		ra B. Bhat	939
	28.1	Polytypes of Silicon Carbide	941
	28.2	Defects in SiC	942
	28.3	Epitaxial Growth of Silicon Carbide	944
	28.4	Epitaxial Growth on Patterned Substrates	952
	28.5	Conclusions	961
		ences	961
29	Liqui	d-Phase Electroepitaxy of Semiconductors	
	Sadik	Dost	967
	29.1	Background	967
	29.2	Early Theoretical and Modeling Studies	971
	29.3	Two-Dimensional Continuum Models	977
	29.4	LPEE Growth Under a Stationary Magnetic Field	978
	29.5	Three-Dimensional Simulations	981
	29.6	High Growth Rates in LPEE: Electromagnetic Mobility	992
		nces	996
30		kial Lateral Overgrowth of Semiconductors	
	_	ew R. Zytkiewicz	999
	30.1	Overview	1000
	30.2	Mechanism of Epitaxial Lateral Overgrowth from the Liquid Phase	1002
	30.3	Dislocations in ELO Layers	1011
	30.4	Strain in ELO Layers	1016
	30.5	$\label{lem:conductor} \textbf{Recent Progress in Lateral Overgrowth of Semiconductor Structures} \; .$	1026
	30.6	Concluding Remarks	1034
	Refere	nces	1035

27 Growth of Semiconductor Single Crystals from Vapor Phase

31		I-Phase Epitaxy of Advanced Materials	
	Christi	ne F. Klemenz Rivenbark	
	31.1	Historical Development of LPE	
	31.2	Fundamentals of LPE and Solution Growth	1042
	31.3	Requirements for Liquid-Phase Epitaxy	1044
	31.4	Developing New Materials:	
		On the Choice of the Epitaxial Deposition Method	1044
	31.5	LPE of High-Temperature Superconductors	
	31.6	LPE of Calcium Gallium Germanates	
	31.7	Liquid-Phase Epitaxy of Nitrides	
	31.8	Conclusions	
	Refere	nces	1064
כ כ	Moloc	ular-Beam Epitaxial Growth of HgCdTe	
J Z		W. Garland, Sivalingam Sivananthan	1069
	32.1	Overview	
	32.2	Theory of MBE Growth	
	32.3	Substrate Materials	
	32.4	Design of the Growth Hardware	
	32.5	In situ Characterization Tools	1000
	32.3	for Monitoring and Controlling the Growth	1090
	32.6	Nucleation and Growth Procedure	
	32.7	Dopants and Dopant Activation	
	32.8	Properties of HgCdTe Epilayers Grown by MBE	
	32.9	HgTe/CdTe Superlattices	
		Architectures of Advanced IR Detectors	
		IR Focal-Plane Arrays (FPAs)	
		Conclusions	
		nces	
	Refere	nices	1141
33	Metal	organic Vapor-Phase Epitaxy	
		uted Nitrides and Arsenide Quantum Dots	
		'. Pohl	
	33.1	· ·	
	33.2	Diluted Nitride InGaAsN Quantum Wells	
		InAs/GaAs Quantum Dots	
		Concluding Remarks	
	Refere	nces	1148
34	Forma	ation of SiGe Heterostructures and Their Properties	
		iro Shiraki, Akira Sakai	1153
	34.1	Background	
	34.2	Band Structures of Si/Ge Heterostructures	
	34.3	Growth Technologies	1156
	34.4	Surface Segregation	
	34.5	Critical Thickness	
		Mechanism of Strain Relaxation	1163

34.7	Formation of Relaxed SiGe Layers	1165
34.8	Formation of Quantum Wells, Superlattices, and Quantum Wires	1173
34.9	Dot Formation	1177
34.10	O Concluding Remarks and Future Prospects	1184
Refer	ences	1184
	ma Energetics in Pulsed Laser and Pulsed Electron Deposition	
Mikho	ail D. Strikovski, Jeonggoo Kim, Solomon H. Kolagani	1193
35.1	Energetic Condensation in Thin Film Deposition	
35.2	PLD and PED Techniques	
35.3	Transformations of Atomic Energy in PLD and PED	1195
35.4	Optimization of Plasma Flux for Film Growth	1204
35.5	Conclusions	1208
Refer	ences	1209
Part F	Modeling in Crystal Growth and Defects	
	ection and Control in Melt Growth of Bulk Crystals	
	g-Wen Lan	
36.1		
36.2	Flow Structures in the Melt	1219
36.3	Flow Control by External Forces	1228
36.4	Outlook	1238
Refer	ences	1238
	r Growth of III Nitrides	4212
_	Cai, Lili Zheng, Hui Zhang	
37.1	· ·	
37.2	Mathematical Models for AIN/GaN Vapor Deposition	
37.3	Characteristics of AIN/GaN Vapor Deposition	
37.4	Modeling of GaN IVPE Growth – A Case Study	
37.5	Surface Evolution of GaN/AIN Film Growth from Vapor	
37.6	Concluding Remarks	1275
Refer	ences	1276
	nuum-Scale Quantitative Defect Dynamics	
	owing Czochralski Silicon Crystals	1201
	d S. Kulkarni	1281
38.1	The Discovery of Microdefects	1283
38.2	Defect Dynamics in the Absence of Impurities	
38.3	Czochralski Defect Dynamics in the Presence of Oxygen	
38.4	Czochralski Defect Dynamics in the Presence of Nitrogen	1313
38.5	The Lateral Incorporation of Vacancies in Czochralski Silicon Crystals	1321
38.6	Conclusions	1328
Refer	ences	1332

		ls for Stress and Dislocation Generation	
	in Me	It Based Compound Crystal Growth	
	Vishw	anath (Vish) Prasad, Srinivas Pendurti	1335
	39.1	Overview	1335
	39.2	Crystal Growth Processes	
	39.3	Dislocations in Semiconductors Materials	
	39.4	Models for Dislocation Generation	1339
	39.5	Diamond Structure of the Crystal	
	39.6	Deformation Behavior of Semiconductors	
	39.7	Application of the Haasen Model to Crystal Growth	
	39.8	An Alternative Model	
	39.9	Model Summary and Numerical Implementation	1360
		Numerical Results	
		Summary	
	Refere	ences	1375
<i>1</i> . O	Macc	and Heat Transport in BS and EFG Systems	
40		and neat transport in 63 and Erd Systems as F. George, Stefan Balint, Liliana Braescu	1370
	40.1	Model-Based Prediction of the Impurity Distribution –	1313
	40.1	Vertical BS System	1380
	40.2	Model-Based Prediction of the Impurity Distribution – EFG System	
		ences	
Pa			
	irt G	Defects Characterization and Techniques	
4 1		•	
41	Crysta	illine Layer Structures with X–Ray Diffractometry	1405
41	Cryst a Paul F	Illine Layer Structures with X-Ray Diffractometry Fewster	
41	Crysta Paul F 41.1	Illine Layer Structures with X-Ray Diffractometry Fewster X-Ray Diffractometry	1406
41	Crysta <i>Paul F</i> 41.1 41.2	Illine Layer Structures with X–Ray Diffractometry Fewster X–Ray Diffractometry Basic Direct X–Ray Diffraction Analysis from Layered Structures	1406 1407
41	Crysta Paul F 41.1 41.2 41.3	X-Ray Diffractometry X-Ray Diffractometry Basic Direct X-Ray Diffraction Analysis from Layered Structures Instrumental and Theoretical Considerations	1406 1407 1412
41	Crysta Paul F 41.1 41.2 41.3 41.4	Alline Layer Structures with X-Ray Diffractometry E. Fewster X-Ray Diffractometry Basic Direct X-Ray Diffraction Analysis from Layered Structures Instrumental and Theoretical Considerations Examples of Analysis from Low to High Complexity	1406 1407 1412 1413
41	Crysta Paul F 41.1 41.2 41.3 41.4 41.5	Alline Layer Structures with X-Ray Diffractometry E. Fewster	1406 1407 1412 1413 1419
41	Crysta Paul F 41.1 41.2 41.3 41.4	Alline Layer Structures with X-Ray Diffractometry E. Fewster X-Ray Diffractometry Basic Direct X-Ray Diffraction Analysis from Layered Structures Instrumental and Theoretical Considerations Examples of Analysis from Low to High Complexity Rapid Analysis Wafer Micromapping	1406 1407 1412 1413 1419 1420
41	Crysta Paul F 41.1 41.2 41.3 41.4 41.5 41.6 41.7	Alline Layer Structures with X-Ray Diffractometry E. Fewster	1406 1407 1412 1413 1419 1420 1421
	Crysta Paul F 41.1 41.2 41.3 41.4 41.5 41.6 41.7 Refere	Alline Layer Structures with X-Ray Diffractometry E. Fewster X-Ray Diffractometry Basic Direct X-Ray Diffraction Analysis from Layered Structures Instrumental and Theoretical Considerations Examples of Analysis from Low to High Complexity Rapid Analysis Wafer Micromapping The Future	1406 1407 1412 1413 1419 1420 1421
	Crysta Paul F 41.1 41.2 41.3 41.4 41.5 41.6 41.7 Refere	Alline Layer Structures with X-Ray Diffractometry Fewster X-Ray Diffractometry Basic Direct X-Ray Diffraction Analysis from Layered Structures Instrumental and Theoretical Considerations Examples of Analysis from Low to High Complexity Rapid Analysis Wafer Micromapping The Future Inces Topography Techniques for Defect Characterization	1406 1407 1412 1413 1419 1420 1421
	Crysta Paul F 41.1 41.2 41.3 41.4 41.5 41.6 41.7 Refere X-Ray of Cry	Alline Layer Structures with X-Ray Diffractometry Fewster X-Ray Diffractometry Basic Direct X-Ray Diffraction Analysis from Layered Structures Instrumental and Theoretical Considerations Examples of Analysis from Low to High Complexity Rapid Analysis Wafer Micromapping The Future Pences Topography Techniques for Defect Characterization estals	1406 1407 1412 1413 1419 1420 1421 1422
	Crysta Paul F 41.1 41.2 41.3 41.4 41.5 41.6 41.7 Reference X-Ray of Cry Balaji	Alline Layer Structures with X-Ray Diffractometry Fewster X-Ray Diffractometry Basic Direct X-Ray Diffraction Analysis from Layered Structures Instrumental and Theoretical Considerations Examples of Analysis from Low to High Complexity Rapid Analysis Wafer Micromapping The Future Inces Topography Techniques for Defect Characterization Instals Raghothamachar, Michael Dudley, Govindhan Dhanaraj	1406 1407 1412 1413 1419 1420 1421 1422
	Crysta Paul F 41.1 41.2 41.3 41.4 41.5 41.6 41.7 Refere X-Ray of Cry Balaji 42.1	Alline Layer Structures with X-Ray Diffractometry Fewster X-Ray Diffractometry Basic Direct X-Ray Diffraction Analysis from Layered Structures Instrumental and Theoretical Considerations Examples of Analysis from Low to High Complexity Rapid Analysis Wafer Micromapping The Future Inces Topography Techniques for Defect Characterization stals Raghothamachar, Michael Dudley, Govindhan Dhanaraj Basic Principles of X-Ray Topography	1406 1407 1412 1413 1419 1420 1421 1422
	Crysta Paul F 41.1 41.2 41.3 41.4 41.5 41.6 41.7 Refere X-Ray of Cry Balaji 42.1 42.2	Alline Layer Structures with X-Ray Diffractometry E. Fewster X-Ray Diffractometry Basic Direct X-Ray Diffraction Analysis from Layered Structures Instrumental and Theoretical Considerations Examples of Analysis from Low to High Complexity Rapid Analysis Wafer Micromapping The Future Inces Topography Techniques for Defect Characterization Instals Raghothamachar, Michael Dudley, Govindhan Dhanaraj Basic Principles of X-Ray Topography Historical Development of the X-Ray Topography Technique	1406 1407 1412 1413 1419 1420 1421 1422 1425 1426
	Crysta Paul F 41.1 41.2 41.3 41.4 41.5 41.6 41.7 Refere X-Ray of Cry Balaji 42.1 42.2 42.3	Alline Layer Structures with X-Ray Diffractometry E. Fewster X-Ray Diffractometry Basic Direct X-Ray Diffraction Analysis from Layered Structures Instrumental and Theoretical Considerations Examples of Analysis from Low to High Complexity Rapid Analysis Wafer Micromapping The Future Inces Topography Techniques for Defect Characterization stals Raghothamachar, Michael Dudley, Govindhan Dhanaraj Basic Principles of X-Ray Topography Historical Development of the X-Ray Topography Technique X-Ray Topography Techniques and Geometry	1406 1407 1412 1413 1419 1420 1421 1422 1428 1430
	Crysta Paul F 41.1 41.2 41.3 41.4 41.5 41.6 41.7 Refere X-Ray of Cry Balaji 42.1 42.2	Alline Layer Structures with X-Ray Diffractometry E. Fewster X-Ray Diffractometry Basic Direct X-Ray Diffraction Analysis from Layered Structures Instrumental and Theoretical Considerations Examples of Analysis from Low to High Complexity Rapid Analysis Wafer Micromapping The Future Inces Topography Techniques for Defect Characterization Instals Raghothamachar, Michael Dudley, Govindhan Dhanaraj Basic Principles of X-Ray Topography Historical Development of the X-Ray Topography Technique	1406 1407 1412 1413 1419 1420 1421 1422 1428 1430 1435

	42.6	Analysis of Defects on X-Ray Topographs	1445
	42.7	Current Application Status and Development	1449
	Refer	ences	
43		ct-Selective Etching of Semiconductors	
		. Weyher, John J. Kelly	
	43.1	0	
	43.2	Wet Etching of Semiconductors: Morphology and Defect Selectivity	
	43.3	Defect-Selective Etching Methods	
	Refe	ences	1473
44	Tran	smission Electron Microscopy Characterization of Crystals	
		ai, Shixin Wang, Lu-Min Wang, Michael Dudley	1477
	44.1		
	44.2	Selected Examples of Application of TEM to Semiconductor Systems.	
	44.3	Concluding Remarks: Current Application Status and Development	
		· · · · · · · · · · · · · · · · · · ·	
	Kelel	rences	1515
45	Elect	ron Paramagnetic Resonance Characterization	
	of Po	pint Defects	
	Mary	E. Zvanut	1521
	45.1	Electronic Paramagnetic Resonance	1522
	45.2	EPR Analysis	1524
	45.3	Scope of EPR Technique	
	45.4	Supplementary Instrumentation and Supportive Techniques	
	45.5	Summary and Final Thoughts	
		ences	
	Dofo	et Chanastariantian in Camirandustona	
46		ct Characterization in Semiconductors Positron Annihilation Spectroscopy	
		Tuomisto	1551
	46.1	Positron Annihilation Spectroscopy	
	46.2	Identification of Point Defects and Their Charge States	
	46.3	Defects, Doping, and Electrical Compensation	
	46.4	Point Defects and Growth Conditions	
	46.5	Summary	1576
	Refer	ences	1576
Pa	rt H	Special Topics in Crystal Growth	
47	Prote	ein Crystal Growth Methods	
		ea E. Gutiérrez-Quezada, Roberto Arreguín-Espinosa, Abel Moreno	1583
	47.1	Properties of Biomacromolecular Solutions	1584
	47.2	Transport Phenomena and Crystallization	
	47.3	Classic Methods of Crystal Growth	1587
	47.4	Protein Crystallization by Diffusion-Controlled Methods	
	41.4	riotem crystamzation by binusion-controlled methods	7,00

	47.5	New Trends in Crystal Growth (Crystal Quality Enhancement)	1591
	47.6	2-D Characterization via Atomic Force Microscopy (Case Study)	1595
	47.7	3-D Characterization via X-Ray Diffraction and Related Methods	1598
	Refere	ences	
48	Crysta	Illization from Gels	
	S. Nar	ayana Kalkura, Subramanian Natarajan	1607
	48.1	Gel Growth in Crystal Deposition Diseases	
	48.2	Experimental Methods	1609
	48.3	Pattern Formation in Gel Systems	
	48.4	Crystals Grown Using Gel Technique	
	48.5	Application in Crystal Deposition Diseases	
	48.6	Crystal-Deposition-Related Diseases	
	48.7	Calcium Oxalate	
	48.8	Calcium Phosphates	
	48.9	Hydroxyapatite (HAP)	
		Dicalcium Phosphate Dihydrate (DCPD)	
		Calcium Sulfate	
		Uric Acid and Monosodium Urate Monohydrate	
		L-Cystine	
		L-Tyrosine, Hippuric Acid, and Ciprofloxacin	
		Atherosclerosis and Gallstones	
		Crystallization of Hormones: Progesterone and Testosterone	
		Pancreatitis	
		Conclusions	
		ences	
	nerere		1030
/ı 0	Chysta	I Growth and Ion Exchange in Titanium Silicates	
43		J. Celestian, John B. Parise, Abraham Clearfield	1627
	49.1	X-Ray Methods	
	49.2	Equipment for Time-Resolved Experiments	
	49.3	Detectors	
	49.4	Software	
	49.5	Types of In Situ Cells	1645
	49.6	In-Situ Studies of Titanium Silicates (Na-TS) with Sitinakite	
		Topology	
	49.7	Discussion of In Situ Studies	1658
	49.8	Summary	1660
	Refere	nces	1660
50	_	e-Crystal Scintillation Materials	
	Martin	Nikl, Anna Vedda, Valentin V. Laguta	
	50.1	Background	1663
	50.2	Scintillation Materials	1670
	50.3	Future Prospects	1689
	50.4	Conclusions	1691
	Refere	nces	1691

51 Silicon Solar Cells: Materials, Devices, and Manufacturing			
	Mohan Narayanan, Ted Ciszek		1701
	51.1	Silicon Photovoltaics	1701
	51.2	Crystal Growth Technologies for Silicon Photovoltaics	1704
	51.3	Cell Fabrication Technologies	1711
	51.4	Summary and Discussion	1715
	Refere	nces	1716
52	Wafer Manufacturing and Slicing Using Wiresaw		
	Imin K	'ao, Chunhui Chung, Roosevelt Moreno Rodriguez	1719
	52.1	From Crystal Ingots to Prime Wafers	1721
	52.2	Slicing: The First Postgrowth Process in Wafer Manufacturing	1726
	52.3	Modern Wiresaw in Wafer Slicing	1730
	52.4	Conclusions and Further Reading	1733
	References		1733
Ac	AcknowledgementsAbout the Authors		
Ab			
De			
	Subject Index		