Contents

	List of figuresv				
Lis	List of Tables				
1.		oduction			
2.	Stat	te of the Art	5		
2	2.1.	The Knowledge Acquisition Bottleneck			
-	2.2.	From Mining to Modelling: The Knowledge Level			
	2.3.	Ontologies and Problem Solving Methods in the Knowledge Acquisition			
I	Paradi	gm			
2	2.4.	Knowledge Acquisition by Knowledge Engineers			
2	2.5.	Knowledge Acquisition by Subject Matter Experts	9		
2	2.6.	Process Knowledge and Subject Matter Experts	11		
2	2.7.	The Process Knowledge Lifecycle			
2	2.8.	Conclusions	15		
3.	Wo	rk Objectives			
3	3.1.	Goals and Open Research Problems	17		
3	3.2.	Contributions to the State of the Art			
3	3.3.	Work Assumptions, Hypotheses, and Restrictions	20		
4.	Acc	uisition of Process Knowledge by SMEs	24		
4	4.1.	Introduction	24		
4	4.1.1.	Knowledge Acquisition and Formulation by SMEs in the Halo Project	26		
4	4.2.	Knowledge Types in Scientific Disciplines			
4	4.2.1.	Domain Analysis			
4	4.2.2.	A Comprehensive Set of Knowledge Types in Scientific Disciplines	30		
4	4.3.	The Process Metamodel	32		
4	4.3.1.	Process Entities in the Process Metamodel	33		
4	4.4.	Problem Solving Methods for the Acquisition of Process Knowledge	35		
4	4.4.1.	A PSM Modelling Framework for Processes			
4	4.4.2.	A Method to Build a PSM Library of Process Knowledge			
4	4.4.3.	A PSM Library for the Acquisition of Process Knowledge			
	4.5.	Enabling SMEs to Formulate Process Knowledge			
	4.5.1.	The DarkMatter Process Editor			
	4.6.	Related Work			
5.		oresenting and Reasoning with SME-authored Process Knowledge	61		
	5.1.	A Formalism for Representing and Reasoning with Process Knowledge	61		
	5.2.	F-logic as Process Representation and Reasoning Language	65		
-	5.3.	The Process Frame			
	5.4.	Code Generation for Process Knowledge			
-		thesis of precedence rules for data flow management			
4	5.5.	Code Synthesis for Iterative Actions			
	5.6.	Soundness and Completeness of Process Models			
_	5.7.	Optimization of the Synthesized Process Code	Q1		
	5.7. 5.8.	Reasoning with Process Models			
6.		alysis of Process Executions by SMEs			
	Ana 6.1.	Towards Knowledge Provenance in Process Analysis	وه مو		
	5.1. 5.2.	Droblem Solving Methods for the Anglysis of Droppes Franchisms			
	5.2. 5.3.	Problem Solving Methods for the Analysis of Process Executions	92		
_	5.4.	A Knowledge-oriented Provenance Environment			
		An Algorithm for Process Analysis Using PSMs	99		
7.	Eva	luation	103		

7.1.	Evaluation of the DarkMatter Process Component for Acquisition of	Process	
Knowle	dge by SMEs	103	
7.1.1.	Evaluation Syllabus	103	
7.1.2.	Distribution of the Formulated Processes across the Evaluation Syllabus	105	
7.1.3.	Utilization of the PSM Library and Process Metamodel	107	
7.1.4.	Usage Experience of the SMEs with the Process Editor	110	
7.1.5.	Performance Evaluation of the Process Component	113	
7.2.	Evaluation of KOPE for the Analysis of Process Executions by SMEs	114	
7.2.1.	Evaluation Settings	115	
7.2.2.	Evaluation Metrics	117	
7.2.3.	Evaluation Results	119	
7.3.	Evaluation Conclusions	121	
8. Conclusions and Future Research			
	iclusions		
8.2. Future Research Problems			
REFERENCES			
Appendix. Sample F-logic Code for a Process Model			