Contents

1	Analogy Between Quantum Mechanics and Optics						
	1.1	Wave Equation	2				
		1.1.1 One-Dimensional Scalar Wave Equation	2				
		1.1.2 One-Dimensional Stationary Schrödinger Equation	4				
	1.2	Optical Waveguide and Quantum Well	5				
		1.2.1 Asymmetric Optical Waveguide	6				
		1.2.2 Asymmetric Square Potential Well	7				
	1.3	Tunneling Effect	8				
		1.3.1 Optical Energy Coupling Structure	9				
		1.3.2 Barrier Tunneling	10				
	1.4	Square-Law Distribution	12				
		1.4.1 Optical Waveguide with Square-Law-Distributed					
			12				
		1.4.2 Harmonic Oscillator	13				
	References						
2	Analytical Transfer Matrix Method						
	2.1		16				
		2.1.1 Establish a Transfer Matrix	16				
		2.1.2 Basic Characteristics of the Transfer Matrix	19				
	2.2	Solving Simple One-Dimensional Problems	24				
		2.2.1 Asymmetric Rectangular Potential Well	24				
		2.2.2 Tunneling Coefficient of Rectangular Barrier	25				
	Refe	rences	25				
3	Sem	iclassical Approximation	27				
	3.1		28				
	3.2	Semiclassical Limit					
	3.3	Connection Formulas at Turning Points	34				

viii Contents

	3.4		cation of the WKB Approximation	37							
		3.4.1	Bound State in a Potential Well	37							
		3.4.2	Barrier Tunneling	39							
		3.4.3	Some Related Topics	41							
	Refe	rences.		44							
4	Exact Quantization Condition via Analytical Transfer										
	Mat		thod	47							
	4.1		e-Well Potentials	48							
	4.2	One-D	Dimensional Potential of Arbitrary Shape	51							
		4.2.1	Analysis of One-Dimensional Problems								
			via Transfer Matrix	51							
		4.2.2	Phase Shift at Classical Turning Points	56							
		4.2.3	Phase Contribution of Scattered Subwaves	57							
		4.2.4	Eigenvalue Equation	58							
		4.2.5	The Calculation of the Wave Function	60							
		4.2.6	Accidental Event of the WKB Approximation	61							
	4.3	Energ	y Splitting in Symmetric Double-Well Potentials	62							
		4.3.1	One-Dimensional Square Double-Well Potential	62							
		4.3.2	One-Dimensional Symmetric Double-Well								
			Potentials	64							
	4.4	4.4 Example of the Lennard-Jones Potential		66							
	4.5	Direct	Derivation of the Exact Quantization Condition	69							
	Refe	erences		72							
5	Barrier Tunneling										
	5.1		Dimensional Arbitrary Continuous Barrier	76							
		5.1.1	ATM Reflection Coefficient with a Constant								
			Effective Mass	76							
		5.1.2	The Case of $m = 1$ and $m = 2 \dots$	81							
		5.1.3	Continuous Potential at the Reference Point	83							
	5.2	Comp	ared with WKB Approximation	84							
		5.2.1	Barrier with Adjacent Wells	84							
		5.2.2	Band-Pass Filter Based on a Gaussian-Modulated								
			Superlattice	86							
	5.3	One-I	Dimensional Arbitrary Continuous Barrier with								
		Positi	on-Dependent Effective Mass	88							
		5.3.1	Derivation of Reflection Coefficient	88							
		5.3.2	The Semiconductor Single Barrier Structure	93							
		5.3.3	Semiconductor Double-Barrier Structure								
			with Nonlinear Potential	94							
	Refe	erences		95							

Contents ix

6	The Scattered Subwaves					
	6.1	Baśic	Concept	98		
		6.1.1	Conceptual Difference of the Wave Vector	98		
		6.1.2	Numerical Comparison of the Total Wavenumber			
			and the Main Wavenumber	99		
	6.2	The S	cattered Subwaves and the Quantum Reflection	100		
		6.2.1	Research Progress in Quantum Reflection	101		
		6.2.2	Explanation by the ATM Method	102		
	6.3	Time	Issue in One-Dimensional Scattering	109		
		6.3.1	Barrier Tunneling Time and the Hartman Effect	109		
		6.3.2	Analogy Between Electron Tunneling			
			and Electromagnetic Tunneling	112		
		6.3.3	Reinterpretation of the Phase Time	114		
		6.3.4	Generalized Expression for Reflection Time	116		
		6.3.5	General Transmission Time	122		
		6.3.6	Scattered Subwaves and the Hartman Effect	126		
	6.4	Scatte	red Subwaves and the Supersymmetric Quantum			
		Mecha	anics	129		
		6.4.1	Brief Introduction of Supersymmetric Quantum			
			Mechanics	130		
		6.4.2	SWKB Approximation	132		
		6.4.3	Consideration of the Scattered Subwaves	134		
		6.4.4	Why Is SWKB Quantization Condition Exact?	141		
	References					