Contents

List of Contributors XV
Preface XIX
Personal Foreword XXI

Part One Natural Products as Sources of Potential Drugs and Systematic Compound Collections 1

1 Natural Products as Drugs and Leads to Drugs: An Introduction and Perspective as of the End of 2012 3
David J. Newman and Gordon M. Cragg
1.1 Introduction 3
1.2 The Sponge-Derived Nucleoside Link to Drugs 5
1.3 Initial Recognition of Microbial Secondary Metabolites as Antibacterial Drugs 8
1.4 β-Lactams of All Classes 9
1.5 Tetracycline Derivatives 12
1.6 Glycopeptide Antibacterials 13
1.7 Lipopeptide Antibacterials 16
1.8 Macrolide Antibiotics 18
1.9 Pleuromutilin Derivatives 19
1.10 Privileged Structures 21
1.11 The Origin of the Benzodiazepines 21
1.12 Benzopyrans: A Source of Unusual Antibacterial and Other Agents 22
1.13 Multiple Enzymatic Inhibitors from Relatively Simple Natural Product Secondary Metabolites 23
1.14 A Variation on BIOS: The “Inside–Out” Approach 26
1.15 Other Privileged Structures 26
1.16 Privileged Structures as Inhibitors of Protein–Protein Interactions 27
1.17 Underprivileged Scaffolds 30
3.3 Synthesis and Biological Activity of Non-natural Epothilones

3.3.1 Semisynthetic Derivatives

3.3.2 Fully Synthetic Analogs

- **3.3.2.1** Polyketide-Based Macrocycles
- **3.3.2.2** Aza-Epothilones (Azathilones)
- **3.3.2.3** Hybrid Structures and Acyclic Analogs

3.4 Conformational Studies and Pharmacophore Modeling

3.5 Conclusions

4 Taxol, Taxoids, and Related Taxanes

Iwao Ojima, Anushree Kamath, and Joshua D. Seitz

4.1 Introduction and Historical Background

- **4.1.1** Discovery of Taxol (Paclitaxel): An Epoch-Making Anticancer Drug from Nature

4.1.2 Taxane Family

4.1.3 Sources and Methods of Production

- **4.1.3.1** Extraction from Yew Trees
- **4.1.3.2** Semisynthesis
- **4.1.3.3** Total Synthesis
- **4.1.3.4** Biotechnology Processes

4.1.4 Clinical Development of Taxol (Taxol®)

4.2 Mechanism of Action and Drug Resistance

- **4.2.1** Taxol, Cell Cycle Arrest, and Apoptosis
- **4.2.2** Drug Resistance to Taxol

4.3 Structure-Activity Relationships (SAR) of Taxol

- **4.3.1** SAR of Taxol
- **4.3.2** Chemical Modifications of Taxol: Taxol Derivatives and Taxoids

4.3.2.1 Modifications in the C13 Side Chain

4.3.2.2 Modification in the Baccatin Component

4.3.2.3 Prodrugs of Taxol

4.4 Structural and Chemical Biology of Taxol

4.4.1 Bioactive Conformation of Taxol

4.4.2 Microtubule-Binding Kinetics of Taxol

4.5 New-Generation Taxoids from 10-DAB

4.5.1 Taxoids from 10-DAB

4.5.2 Taxoids from 14β-Hydroxybaccatin III

4.5.3 Taxoids from 9-Dihydrobaccatin III

4.6 Taxoids in Clinical Development

- **4.6.1** Docetaxel (Taxotere®, RP 56976)
- **4.6.2** Cabazitaxel (Jevtana®, RPR 116258A, XRP6258)
- **4.6.3** Larotaxel (XRP9881, RPR109881)
- **4.6.4** Ortataxel (SB-T-101131, IDN5109, BAY59-8862, ISN 5109)
5 Camptothecin and Analogs 181
 Giuseppe Giannini
5.1 Introduction 181
5.2 Biology Activity 185
5.2.1 Camptothecin Acts on Eukaryotic Top 1 187
5.2.2 Drug Resistance and Topoisomerase Mutation 189
5.2.3 Camptothecin: Beyond the Topoisomerase I 190
5.2.4 Off-Label Investigation 190
5.3 Camptothecin in Clinical Use and Under Clinical Trials 190
5.3.1 Homocamptothecin 203
5.4 Chemistry 204
5.4.1 Total Syntheses 205
5.4.2 Syntheses of Some Representative Camptothecin Derivatives 207
5.5 Structure–Activity Relationship 210
5.6 Xenograft Studies 211
5.7 Prodrug/Targeting 212
5.8 Developments of Modern Chromatographic Methods Applied to
 CPT 214
5.9 Conclusions and Perspectives 214
References 215

6 A Short History of the Discovery and Development of Naltrexone and
 Other Morphine Derivatives 225
 Vimal Varghese and Tomas Hudlicky
6.1 Introduction 225
6.2 History and Development 226
6.3 Pharmacology 238
6.4 Structure–Activity Relationship of Morphine and its Analogs 240
6.5 Conclusions and Outlook 244
References 244

7 Lincosamide Antibacterials 251
 Hardwin O’Dowd, Alice L. Enwin, and Jason G. Lewis
7.1 Introduction 251
7.2 Mechanism of Action 253
7.3 Antibacterial Spectrum 254
8 Platensimycin and Platencin 271
 Arun K. Ghosh and Kai Xi
 8.1 Introduction and Historical Background 271
 8.2 Discovery and Bioactivities of Platensimycin and Platencin 272
 8.3 Total and Formal Syntheses of Platensimycin 278
 8.4 Total and Formal Syntheses of Platencin 283
 8.5 Analogs of Platensimycin and Platencin 287
 8.6 Conclusions and Perspective 295
 References 296

9 From Natural Product to New Diabetes Therapy: Phlorizin and the Discovery of SGLT2 Inhibitor Clinical Candidates 301
 Vincent Mascitti and Ralph P. Robinson
 9.1 Introduction 301
 9.2 Phlorizin: A Drug Lead from Apple Trees 302
 9.3 Phlorizin: Mechanism of Action 304
 9.4 Phlorizin, SGLTs, and Diabetes 306
 9.5 Phlorizin Analogs: O-Glucosides 306
 9.6 Phlorizin Analogs: C-Glucosides 309
 9.7 C-Glucosides: Aglycone Modifications 314
 9.8 C-Glucosides: Sugar Modifications 316
 9.9 Conclusions 325
 References 325

10 Aeruginosins as Thrombin Inhibitors 333
 Juan R. Del Valle, Eric Therrien, and Stephen Hanessian
 10.1 Introduction 333
 10.2 Targeting the Blood Coagulation Cascade 333
 10.3 Structure of Thrombin 335
 10.4 The Aeruginosin Family 336
 10.4.1 Aeruginosin 298A and Related Microcystis sp. Peptides 336
 10.4.2 Oscillarin and Related Oscillatoria sp. Peptides 339
 10.4.3 Dysinosin A and Related Peptides from Dysidaedae Sponges 340
 10.4.4 Structurally Related Antithrombin Peptide Natural Products 342
 10.4.5 Close Analogs of Antithrombotic Aeruginosins 344
 10.5 Mimicking Nature 346
 10.5.1 The 50-Year Challenge 348
 10.5.2 Peptide Analogs 350
 10.5.3 Peptidomimetics 352
Part Three Natural Products as an Incentive for Enabling Technologies 365

11 Macrolides and Antifungals via Biotransformation 367
 Aaron E. May and Chaitan Khosla

11.1 Introduction to Polyketides and Their Activity 367
11.2 Mechanism of Polyketide Biosynthesis 367
 11.2.1 Erythromycin 371
 11.2.2 Avermectin/Doramectin 377
 11.2.3 Tetracyclines 381
 11.2.4 Salinosporamides 385
11.3 Conclusions 391
 References 392

12 Unnatural Nucleoside Analogs for Antisense Therapy 403
 Punit P. Seth and Eric E. Swayze

12.1 Nature Uses Nucleic Acid Polymers for Storage, Transfer, Synthesis, and Regulation of Genetic Information 403
12.2 The Antisense Approach to Drug Discovery 404
12.3 The Medicinal Chemistry Approach to Oligonucleotide Drugs 406
12.4 Structural Features of DNA and RNA Duplexes 407
12.5 Improving Binding Affinity of Oligonucleotides by Structural Mimicry of RNA 410
 12.5.1 2'-Modified RNA 411
 12.5.1.1 2'-O-Me RNA 411
 12.5.1.2 2'-O-Methoxyethyl RNA 412
 12.5.1.3 2'-Fluoro RNA 413
 12.5.2 2',4'-Bridged Nucleic Acids 414
 12.5.2.1 2',4'-Constrained MOE and 2',4'-Constrained Ethyl BNA 415
 12.5.2.2 5'-Me-LNA 416
 12.5.2.3 Carbocyclic LNA Analogs 417
 12.5.2.4 Ring-Expanded BNA Analogs 417
 12.5.2.5 α,β-Bridged Nucleic Acids 418
 12.5.3 Hexitol Nucleic Acids 420
 12.6 Improving Binding Affinity of Oligonucleotides by Conformational Restraint of DNA – the Bicyclo- and Tricyclo-DNA Class of Nucleic Acid Analogs 421
 12.7 Improving Binding Affinity of Oligonucleotides by Conformational Restraint of the Phosphodiester Backbone – α,β-Constrained Nucleic Acids 423
12.8 Naturally Occurring Backbone Modifications 424
12.8.1 The Phosphorothioate Modification 425
12.9 Naturally Occurring Heterocycle Modifications 426
12.9.1 5-Substituted Pyrimidine Analogs 427
12.10 Outlook 428
References 429

13 Hybrid Natural Products 441
Keisuke Suzuki and Yoshizumi Yasui

13.1 Introduction 441
13.2 Staurosporines (Amino Acid–Sugar Hybrids) 444
13.2.1 Occurrence 444
13.2.2 Bioactivity 445
13.2.3 Biosynthesis 446
13.2.4 Synthesis 446
13.2.5 Medicinal Chemistry 447
13.3 Lincomycins (Amino Acid–Sugar Hybrids) 448
13.3.1 Occurrence 448
13.3.2 Bioactivity 448
13.3.3 Biosynthesis 448
13.3.4 Medicinal Chemistry 449
13.4 Madindolines (Amino Acid–Polyketide Hybrids) 449
13.4.1 Occurrence 449
13.4.2 Bioactivity 450
13.4.3 Synthesis 451
13.5 Kainoids (Amino Acid–Terpene Hybrids) 451
13.5.1 Occurrence 451
13.5.2 Bioactivity 451
13.5.3 Biosynthesis 453
13.5.4 Synthesis 453
13.5.5 Medicinal Chemistry 453
13.6 Benanomicin–Pradimicin Antibiotics (Sugar–Polyketide Hybrids) 455
13.6.1 Occurrence 455
13.6.2 Bioactivity 455
13.6.3 Medicinal Chemistry 456
13.6.4 Synthesis 457
13.7 Angucyclines (Sugar–Polyketide Hybrids) 457
13.7.1 Occurrence and Biosynthesis 457
13.7.2 Bioactivity 459
13.7.3 Synthesis 460
13.8 Furaquinocins (Polyketide–Terpene Hybrids) 462
13.8.1 Occurrence 462
13.8.2 Biosynthesis 464
13.8.3 Synthesis 464
13.9 Conclusions 467
References 467
14 Rethinking the Role of Natural Products: Function-Oriented Synthesis, Bryostatin, and Bryologs 475
Paul A. Wender, Alison C. Donnelly, Brian A. Loy, Katherine E. Near, and Daryl Staveness

14.1 Introduction 475
14.2 Introduction to Function-Oriented Synthesis 476
14.2.1 Representative Examples of Function-Oriented Synthesis 478
14.3 Introduction to Bryostatin 489
14.4 Bryostatin Total Syntheses 493
14.4.1 Total Syntheses of Bryostatins 2, 3, and 7 (1990–2000) 493
14.4.2 Total Synthesis of Bryostatin 16 (2008) 494
14.4.3 Total Synthesis of Bryostatin 1 (2011) 495
14.4.4 Total Synthesis of Bryostatin 9 (2011) 495
14.4.5 Total Synthesis of Bryostatin 7 (2011) 495
14.5 Application of FOS to the Bryostatin Scaffold 496
14.5.1 Initial Pharmacophoric Investigations on the Bryostatin Scaffold 498
14.5.2 Design of the First Synthetically Accessible Functional Bryostatin Analogs 500
14.5.3 Initial Preclinical Investigations of Functional Bryostatin Analogs 508
14.5.4 Des-A-Ring Analogs 510
14.5.5 C13-Functionalized Analogs 514
14.5.6 B-Ring Dioxolane Analog 516
14.5.7 C20 Analogs 518
14.5.8 C7 Analogs 520
14.5.9 A-Ring Functionalized Bryostatin Analogs 522
14.5.10 New Methodology: Prins-Driven Macrocyclization Toward B-Ring Pyran Analogs 527
14.5.11 A-Ring Functionalized Analogs and Induction of Latent HIV Expression 529
14.6 Conclusions 533

References 533

15 Cyclopamine and Congeners 545
Philipp Heretsch and Athanassios Giannis

15.1 Introduction 545
15.2 The Discovery of Cyclopamine 545
15.3 Accessibility of Cyclopamine 547
15.4 The Hedgehog Signaling Pathway 549
15.5 Medical Relevance of Cyclopamine and the Hedgehog Signaling Pathway 551
15.5.1 Models of Cancer Involving the Hedgehog Signaling Pathway 551
15.5.2 Hedgehog Signaling Pathway Inhibitors for the Treatment of Pancreatic Cancer, Myelofibrosis, and Chondrosarcoma 552
Part Five Nature: The Provider, the Enticer, and the Healer 565

16 Hybrids, Congeners, Mimics, and Constrained Variants Spanning 30 Years of Natural Products Chemistry: A Personal Retrospective 567
 Stephen Hanessian
16.1 Introduction 567
16.2 Structure-Based Organic Synthesis 570
16.3 Nucleosides 572
16.3.1 Quantamycin 572
16.3.2 Malayamycin A 573
16.3.3 Hydantocidin 573
16.4 β-Lactams 576
16.4.1 Analog Design 576
16.4.2 Unnatural β-Lactams 577
16.5 Morphinomimetics 579
16.6 Histone Deacetylase Inhibitors 580
16.6.1 Acyclic Inhibitors 581
16.6.2 Macro cyclic Inhibitors 582
16.7 Pactamycin Analogs 583
16.8 Aeruginosins: From Natural Products to Achiral Analogs 586
16.8.1 Structure-Based Hybrids and Truncated Analogs 586
16.8.2 Constrained Peptidomimetics 589
16.8.3 Achiral Inhibitors 589
16.9 Avermectin B₁₉ and Bafilomycin A₁ 591
16.10 Bafilomycin A₁ 592
16.11 3-N,N-Dimethylamino Lincomycin 594
16.12 Oxazolidinone Ketolide Mimetics 595
16.13 Epilogue 596
 References 598

Index 611