Contents

Part I Debugging

Deb	ugging at Scale with Allinea DDT	3
Dav	id Lecomber and Patrick Wohlschlegel	
1	Why Scalability Matters for Debugging	3
2	The Ability to Debug at-Scale Changes Everything	4
3	How Allinea DDT Helps to Fix Bugs	5
4	Understanding Multiple Processes	5
5	Simple and Effective Process Control	6
6	Smart Highlighting and Sparklines	7
7	Searching Data Sets	8
8	Visualizing Large Data Sets in Real-Time	9
9	Deadlocks	10
10	Memory Debugging	11
11	Summary	11
12	Further Readings	12
Tasl	k Debugging with TEMANEJO	13
Stef	fen Brinkmann, José Gracia, and Christoph Niethammer	
1	Introduction	13
2	What Debugging Means in the Context of Task-Based Parallelism	15
3	The Debugging Process	16
	3.1 Communication	16
	3.2 Graph Display	17
	3.3 Execution Control	20
4	Conclusion	20
Refe	erences	21

viii Contents

Part II Automatic Error Detection

Joa	PI Runtime Error Detection with MUST: Advanced Error Reports chim Protze, Tobias Hilbrich, Bronis R. de Supinski,	25
Ma	rtin Schulz, Matthias S. Müller, and Wolfgang E. Nagel	
1	Introduction	25
2	MUST	27
3	Shortcoming of Current Error Views	29
	3.1 Example 1: Pinpointing Deadlocks	29
	3.2 Example 2: Viewing Datatype Related Problems	31
4	Deadlock View in MUST	31
5	Type Tree View	33
6	Related Work	35
7	Conclusion	36
	Ferences	37
		31
Ad	vanced Memory Checking for MPI Parallel Applications	
	ng MemPin	39
Shi	ging Fan, Rainer Keller, and Michael Resch	
1	Introduction	40
2	Overview of Intel Pin	41
3	Design and Implementation	42
_	3.1 MemPin	43
	3.2 Integration of MemPin with Open MPI	44
4	Memory Checks in Parallel Application	46
T	4.1 Pre-communication Checks	46
	4.2 Post-communication Checking	47
_		48
5	Performance Comparison	
6	2D Heat Conduction Program with MemPin	49
7	Conclusion	51
Ref	erences	52
Ge	rt III Performance Analysis and Optimization neric Support for Remote Memory Access Operations	
	Score-P and OTF2	57
	dreas Knüpfer, Robert Dietrich, Jens Doleschal,	
	rkus Geimer, Marc-André Hermanns, Christian Rössel,	
Ro	nny Tschüter, Bert Wesarg, and Felix Wolf	
1	Introduction	57
2	Overview of Score-P and OTF2	58
	2.1 The Score-P Instrumentation and Measurement System	59
	2.2 The Open Trace Format 2	59
	2.3 Existing Event Record Types	60
	2.4 Current and Future Directions	60

Contents ix

3	RM.	A in HPC Parallel Programming	61		
	3.1	RMA Operations in HPC Parallelization Libraries	61		
	3.2	Concepts in RMA Parallelization Models	62		
4	Gen	eric RMA Event Types	64		
	4.1	RMA Window Handling	64		
	4.2	Specification of the Passive Side	65		
	4.3	Get and Put	65		
	4.4	Atomic RMA Operations	66		
	4.5	Completion Records	67		
	4.6	Notification via RMA	67		
	4.7	Synchronization	68		
	4.8	Collective Operations and Synchronization	69		
	4.9	Locking of Resources	69		
5		mple Cases with RMA Event Types	70		
6		clusions and Outlook	72		
-		es	73		
			, .		
		elated Performance Analysis Using Rogue Wave			
Sof	ftware	e's ThreadSpotter	75		
Ro	yd Lü	dtke and Chris Gottbrath			
1	Intro	oduction	75		
2	Basi	ic Overview on Caching	76		
	2.1	Motivation for Caching	76		
	2.2	Cache Architectures	76		
	2.3	Cache Organization	77		
	2.4	Prefetching	77		
	2.5	Eviction of Cache Lines (Replacement Policies)	77		
	2.6	Complexity Added by Coherence	78		
	2.7	Important Statistics	78		
	2.8	Optimal Cache Utilization	79		
	2.9	What Performance Improvement Is Possible When			
		Optimizing an Application's Cache Utilization?	79		
3	ThreadSpotter: A Statistical Approach for Cache-Related Profiling 8				
	3.1	Different Approaches of Cache Related Performance Analysis	80		
	3.2	What Kind of Data Is ThreadSpotter Looking at in			
		Order to Create a Report?	81		
	3.3	Sampling an Application	81		
	3.4	Report Generation	83		
	3.5	Presenting Optimization Opportunities That			
		ThreadSpotter Discovers	85		
4	Тур	Types of Performance Optimization Opportunities Discovered			
	by 7	ThreadSpotter	89		
	4.1	What Kind of Cache-Related Opportunities			
		for Performance Optimization Can Be Discovered			
		by ThreadSpotters Statistical Approach?	89		
	42	Reuse	91		

x Contents

	4.3	Non-temporal Data	92
	4.4	Cache Hot Spots	92
5	Cond	clusion	93
Refe		es	93
		Hot Spot Analysis of HPC Software with the Vampir	95
		ance Tool Suite	93
		runst and Matthias Weber	95
1		duction	93 97
2		Map Overlay for the Master Timelineomization of Performance Metrics	100
3			100
	3.1	Delayed MPI Communication	101
4	3.2	Conditional Floating Point Performance	101
4		mement of Invocation Graph	104
	4.1	Rules	
_	4.2	Examples	105
5		parison of Multiple Program Runs	110
	5.1	Multiple Program Executions at a Glance	111
_	5.2	Alignment of Multiple Trace Files	112
6		clusion	114
Refe	erence	es	114
Exte	endin	g Scalasca's Analysis Features	115
		orenz, David Böhme, Bernd Mohr, Alexandre Strube,	
		n Szebenyi	
1	Intro	duction	115
2		Cause Analysis	117
3	Criti	cal Path Analysis	118
4	Time	e-Series Profiling	120
5		ologies	122
	5.1	Hardware Topologies	123
	5.2	Processes X Threads	124
	5.3	Runtime Mapping	124
	5.4	Algorithm Domain	124
6	Futu	re Work	125
Refe		es	125
			127
		PSA Workflow and Tools	12/
		ohr, Vladimir Voevodin, Judit Giménez, Erik Hagersten,	
		Knüpfer, Dmitry A. Nikitenko, Mats Nilsson,	
		ervat, Aamer Shah, Frank Winkler, Felix Wolf,	
_	•	Chukov	128
1		duction	
۷		HOPSA Workflow	129 129
	2.1	Overview	
	2.2	Performance Screening	130

	2.3	Performance Diagnosis	132		
	2.4	The HOPSA Performance Tools	136		
	2.5	Integration Among Performance Analysis Tools	141		
	2.6	Integration of System Data and Performance Analysis Tools	142		
	2.7	Opportunities for System Tuning	144		
3	Cond	clusion	145		
Refe	References				
Par	t IV	Performance Data Visualization			
Vist	ıalizi	ng More Performance Data Than What Fits on Your Screen	149		
Luc	as M.	Schnorr and Arnaud Legrand			
1	Intro	duction	149		
2	Moti	vation and Discussion	151		
3	Mult	ii-scale Trace Aggregation for Visualization	153		
4	Visu	alization Techniques	155		
	4.1	Squarified Treemap View	155		
	4.2	Hierarchical Graph View	157		
5	The	Viva Visualization Tool	159		
6	Cond	clusion	159		
Refe	erence	es	160		