Contents

I	Balar	nce Laws	1
	1.1	Formulation of the Balance Law	2
	1.2	Reduction to Field Equations	3
	1.3	Change of Coordinates and a Trace Theorem	7
	1.4	Systems of Balance Laws	12
	1.5	Companion Balance Laws	13
	1.6	Weak and Shock Fronts	15
	1.7	Survey of the Theory of BV Functions	17
	1.8	BV Solutions of Systems of Balance Laws	21
	1.9	Rapid Oscillations and the Stabilizing Effect of Companion	
		Balance Laws	22
	1.10	Notes	23
II	Introduction to Continuum Physics		
	2.1	Bodies and Motions	25
	2.2	Balance Laws in Continuum Physics	28
	2.3	The Balance Laws of Continuum Thermomechanics	31
	2.4	Material Frame Indifference	35
	2.5	Thermoelasticity	36
	2.6	Thermoviscoelasticity	44
	2.7	Incompressibility	47
	2.8	Relaxation	48
	2.9	Notes	49
Ш	Hyperbolic Systems of Balance Laws		
	3.1	Hyperbolicity	53
	3.2	Entropy-Entropy Flux Pairs	54
	3.3	Examples of Hyperbolic Systems of Balance Laws	56
	3.4	Notes	72

XXXII Contents

IV	The (Cauchy Problem	75		
	4.1	The Cauchy Problem: Classical Solutions	75		
	4.2	Breakdown of Classical Solutions	78		
	4.3	The Cauchy Problem: Weak Solutions	81		
	4.4	Nonuniqueness of Weak Solutions	82		
	4.5	Entropy Admissibility Condition	83		
	4.6	The Vanishing Viscosity Approach	. 87		
	4.7	Initial-Boundary Value Problems	91		
	4.8	Notes	95		
V	Entropy and the Stability of Classical Solutions				
	5.1	Convex Entropy and the Existence of Classical Solutions	98		
	5.2	The Role of Damping and Relaxation	108		
	5.3	Convex Entropy and the Stability of Classical Solutions	116		
	5.4	Involutions	119		
	5.5	Contingent Entropies and Polyconvexity	129		
	5.6	Initial-Boundary Value Problems			
	5.7	Notes			
VI	The L^1 Theory for Scalar Conservation Laws				
	6.1	The Cauchy Problem: Perseverance and Demise			
		of Classical Solutions	146		
	6.2	Admissible Weak Solutions and their Stability Properties	148		
	6.3	The Method of Vanishing Viscosity	153		
	6.4	Solutions as Trajectories of a Contraction Semigroup	158		
	6.5	The Layering Method	164		
	6.6	Relaxation	167		
	6.7	A Kinetic Formulation	174		
	6.8	Fine Structure of L^{∞} Solutions			
	6.9	Initial-Boundary Value Problems	183		
	6.10	The L ¹ Theory for Systems of Conservation Laws			
	6.11	Notes	192		
VII	Hyperbolic Systems of Balance Laws				
V		ne-Space Dimension	195		
	7.1				
	7.2	Hyperbolicity and Strict Hyperbolicity			
	7.3	Riemann Invariants			
	7.4	Entropy-Entropy Flux Pairs			
	7.5	Genuine Nonlinearity and Linear Degeneracy			
	7.6	Simple Waves			
	7.0 7.7	Explosion of Weak Fronts			
	7.7 7.8	Existence and Breakdown of Classical Solutions			
	7.8 7.9	Weak Solutions			
		Notes			
	7.10	INUICS			

VIII	Admi	ssible Shocks	231
	8.1	Strong Shocks, Weak Shocks, and Shocks of Moderate Strength	231
	8.2	The Hugoniot Locus	234
	8.3	The Lax Shock Admissibility Criterion;	
		Compressive, Overcompressive and Undercompressive Shocks.	240
	8.4	The Liu Shock Admissibility Criterion	
	8.5	The Entropy Shock Admissibility Criterion	248
	8.6	Viscous Shock Profiles	
	8.7	Nonconservative Shocks	
	8.8	Notes	265
IX	Admi	ssible Wave Fans and the Riemann Problem	271
	9.1	Self-Similar Solutions and the Riemann Problem	271
	9.2	Wave Fan Admissibility Criteria	274
	9.3	Solution of the Riemann Problem via Wave Curves	275
	9.4	Systems with Genuinely Nonlinear	
		or Linearly Degenerate Characteristic Families	278
	9.5	General Strictly Hyperbolic Systems	
	9.6	Failure of Existence or Uniqueness;	
		Delta Shocks and Transitional Waves	287
	9.7	The Entropy Rate Admissibility Criterion	290
	9.8	Viscous Wave Fans	
	9.9	Interaction of Wave Fans	
	9.10	Breakdown of Weak Solutions	317
	9.11	Notes	320
X	Gener	ralized Characteristics	325
	10.1	BV Solutions	325
	10.2	Generalized Characteristics	326
	10.3	Extremal Backward Characteristics	328
	10.4	Notes	330
ΧI	Genu	inely Nonlinear Scalar Conservation Laws	
	11.1	Admissible BV Solutions and Generalized Characteristics	
	11.2	The Spreading of Rarefaction Waves	
	11.3	Regularity of Solutions	
	11.4	Divides, Invariants and the Lax Formula	
	11.5	Decay of Solutions Induced by Entropy Dissipation	
	11.6	Spreading of Characteristics and Development of <i>N</i> -Waves	346
	11.7	Confinement of Characteristics and Formation of Saw-toothed Profiles	348
	11 0	Comparison Theorems and L^1 Stability	
	11.8	Genuinely Nonlinear Scalar Balance Laws	
	11.9	Balance Laws with Linear Excitation	
		An Inhomogeneous Conservation Law	370

XXXIV Contents

XII	Genui	inely Nonlinear Systems of Two Conservation Laws	
	12.1	Notation and Assumptions	
	12.2	Entropy-Entropy Flux Pairs and the Hodograph Transformation	375
	12.3	Local Structure of Solutions	378
	12.4	Propagation of Riemann Invariants	
		Along Extremal Backward Characteristics	381
	12.5	Bounds on Solutions	
	12.6	Spreading of Rarefaction Waves	410
	12.7	Regularity of Solutions	
	12.8	Initial Data in L^1	
	12.9	Initial Data with Compact Support	421
	12.10	Periodic Solutions	
		Notes	
XIII	The F	Random Choice Method	435
	13.1	The Construction Scheme	435
	13.2	Compactness and Consistency	438
	13.3	Wave Interactions, Approximate Conservation Laws	
		and Approximate Characteristics	
		in Genuinely Nonlinear Systems	444
	13.4	The Glimm Functional for Genuinely Nonlinear Systems	
	13.5	Bounds on the Total Variation	
		for Genuinely Nonlinear Systems	453
	13.6	Bounds on the Supremum for Genuinely Nonlinear Systems	
	13.7	General Systems	
	13.8	Wave Tracing	
	13.9	Inhomogeneous Systems of Balance Laws	
	13.10	Notes	
XIV	The F	Front Tracking Method and Standard Riemann Semigroups	477
	14.1	Front Tracking for Scalar Conservation Laws	
	14.2	Front Tracking for Genuinely Nonlinear	
		Systems of Conservation Laws	480
	14.3	The Global Wave Pattern	
	14.4	Approximate Solutions	486
	14.5	Bounds on the Total Variation	
	14.6	Bounds on the Combined Strength of Pseudoshocks	491
	14.7	Compactness and Consistency	
	14.8	Continuous Dependence on Initial Data	
	14.9	The Standard Riemann Semigroup	
	14.10	Uniqueness of Solutions	
		Continuous Glimm Functionals,	
		Spreading of Rarefaction Waves,	
		and Structure of Solutions	507
	14.12	Stability of Strong Waves	
		Notes	

XV	Const	truction of BV Solutions by the Vanishing Viscosity Method	517
	15.1	The Main Result	517
	15.2	Road Map to the Proof of Theorem 15.1.1	519
	15.3	The Effects of Diffusion	521
	15.4	Decomposition into Viscous Traveling Waves	524
	15.5	Transversal Wave Interactions	
	15.6	Interaction of Waves of the Same Family	532
	15.7	Energy Estimates	
	15.8	Stability Estimates	
	15.9	Notes	
XVI	Comp	pensated Compactness	545
	16.1	The Young Measure	
	16.2	Compensated Compactness and the div-curl Lemma	
	16.3	Measure-Valued Solutions for Systems of Conservation Laws	
		and Compensated Compactness	548
	16.4	Scalar Conservation Laws	
	16.5	A Relaxation Scheme for Scalar Conservation Laws	553
	16.6	Genuinely Nonlinear Systems of Two Conservation Laws	556
	16.7	The System of Isentropic Elasticity	
	16.8	The System of Isentropic Gas Dynamics	
	16.9	Notes	
XVII	Cons	ervation Laws in Two Space Dimensions	573
	17.1	Self-Similar Solutions for Multidimensional Scalar	
		Conservation Laws	573
	17.2	Steady Planar Isentropic Gas Flow	
	17.3	Self-Similar Planar Irrotational Isentropic Gas Flow	
	17.4	Supersonic Isentropic Gas Flow Past a Ramp of Gentle Slope	
	17.5	Regular Shock Reflection on a Wall	588
	17.6	Shock Collision with a Steep Ramp	
	17.7	Notes	
Biblio	graphy	y	597
Autho	r Inde	x	693
Subje	ct Inde	ex	703