Contents

Preface—v

Author index---- xv

1	Membrane applications in agro-industry —— 1
	F. Petrus Cuperus and A.C.M. (Tony) Franken
1.1	Introduction —— 1
1.2	Membranes in biorefinery —— 1
1.2.1	What is biorefinery? —— 1
1.2.2	Mild extraction techniques —— 2
1.2.3	Use of membranes in biorefinery —— 4
1.2.3.1	Crossflow — 5
1.2.3.2	Cross-rotation (CR) filtration — 5
1.2.3.3	Rotating membranes — 6
1.2.3.4	Vibrational membranes — 7
1.2.4	Removing minerals from road-side grass —— 10
1.2.5	Biofuel including microalgae —— 11
1.3	Membranes in vegetable oils and fats 14
1.3.1	Membrane technology applied to vegetable oils —— 14
1.3.2	Solvent recovery and reuse —— 16
1.3.3	Wax removal and/or recovery —— 17
1.3.4	Goodies in oil —— 18
1.4	Application scale and outlook —— 20
1.4.1	Application scale —— 20
1.4.2	Outlook —— 21
1.5	References —— 21
2	Process intensification in integrated membrane processes —— 25
_	Philip Lutze and Rafigul Gani
2.1	Introduction —— 25
2.1.1	Background: process intensification —— 25
2.1.2	Membranes and process intensification —— 26
2.2	Synthesis/design of membrane-assisted PI – overview
	and concepts — 28
2.2.1	Mathematical formulation of the PI synthesis problem —— 29
2.2.2	Pl synthesis based on the decomposition approach —— 31
2.2.3	Phenomena as building blocks for process synthesis —— 31
2.2.4	Connection of phenomena —— 33
2.3	Synthesis/design of membrane-assisted PI – workflow —— 34

Steps of the general workflow --- 34

2.3.1

2.3.1.1	Step 1: Define problem —— 34
2.3.1.2	Step A2: Analyze the process — 37
2.3.1.3	B2: Identify and analyze necessary tasks to achieve
	the process target — 37
2.3.1.4	Step 6: Solve the reduced optimization problem and validate most
	promising — 37
2.3.2	KBS workflow —— 38
2.3.3	UBS workflow —— 38
2.3.3.1	Step U2: Collect PI equipment — 38
2.3.3.2	Step U3: Select and develop models —— 38
2.3.3.3	Step U4: Generate feasible flowsheet options — 39
2.3.3.4	Step U5: Fast screening for process constraints — 39
2.3.4	PBS workflow —— 39
2.3.4.1	Step P3: Identification of desirable phenomena —— 40
2.3.4.2	Step P4: Generate feasible operation/flowsheet
	options —— 40
2.3.4.3	Step P5: Fast screening for process constraints — 40
2.4	Synthesis/design of membrane-assisted PI – sub-algorithms,
	supporting methods and tools —— 41
2.4.1	Sub-algorithms — 41
2.4.2	Supporting methods and tools —— 41
2.4.2.1	Knowledge base tool —— 42
2.4.2.2	Model library —— 42
2.4.2.3	Method based on thermodynamic insights —— 42
2.4.2.4	Driving force method —— 43
2.4.2.5	Extended Kremser method —— 43
2.4.2.6	Additional tools —— 43
2.5	Conceptual example —— 45
2.5.1	Step 1: Define problem — 45
2.5.2	Step A2: Analyze the process —— 45
2.5.3	Result of the PBS workflow —— 46
2.5.3.1	Step P3: Identification of desirable phenomena —— 46
2.5.3.2	Step P4: Generate feasible operation/flowsheet options —— 48
2.5.3.3	Step P5: Fast screening for process constraints —— 49
2.5.3.4	Step 6: Solve the reduced optimization problem and validate most
	promising — 50
2.5.4	Comparison of solutions obtained from PBS, KBS and UBS —— 51
2.5.4.1	Result of the KBS workflow —— 51
2.5.4.2	Result of the UBS workflow — 53
2.5.4.3	Comparison of the results — 53
2.6	Conclusions —— 55
2.7	References — 55

3	Integrated membrane operations in fruit juice processing —— 59
	Alfredo Cassano, Carmela Conidi and Enrico Drioli
3.1	Introduction —— 59
3.2	Clarification of fruit juices — 59
3.3	Concentration of fruit juices —— 65
3.3.1	Nanofiltration —— 65
3.3.2	Reverse osmosis —— 66
3.3.3	Osmotic distillation —— 67
3.3.4	Membrane distillation —— 69
3.4	Integrated membrane operations in fruit juices production —— 71
3.4.1	Apple juice —— 71
3.4.2	Red fruit juices —— 74
3.4.3	Other fruit juices — 78
3.4.3.1	Kiwifruit juice —— 78
3.4.3.2	Cactus pear juice —— 79
3.4.3.3	Melon juice —— 81
3.5	Conclusions — 81
3.6	References —— 82
4	Integrated membrane operations in citrus processing —— 87
	Alfredo Cassano and Bining Jiao
¥.1	Introduction —— 87
4.2	Clarification of citrus juices — 89
4.3	Debittering of orange juice —— 92
4.4	Concentration of citrus juices —— 93
4.4.1	Reverse osmosis —— 93
4.4.2	Membrane distillation and osmotic distillation —— 95
4.5	Recovery of aroma compounds —— 102
4.6	Treatment of citrus by-products —— 103
4.7	Concluding remarks —— 108
4.8	References —— 109
5	Integrated membrane and conventional processes applied to milk
,	processing —— 113
	Germano Mucchetti
5.1	Introduction —— 113
5.2	Fluid milk —— 114
	MF and bacterial removal —— 114
5.2.1	MF, somatic cells and enzyme removal —— 118
5.2.2	Membrane reactors for free lactose milk —— 119
5.2.3	
5.2.4	Heat labile ingredients sterilization (MF/UF) and addition to
	heat-treated milk during packaging —— 120

5.3	Cheese milk —— 121
5.3.1	Reverse osmosis application to cheese milk —— 121
5.3.2	Cheese milk concentration —— 121
5.3.3	Cheese milk medium and high concentration —— 122
5.3.4	Cheese milk standardization —— 123
5.3.5	Cream concentration by UF for mascarpone cheese —— 125
5.3.6	Cheese brine treatment —— 127
5.4	Conclusions —— 128
5.5	References —— 128
6	Integrated membrane operations in whey processing —— 133
	Geneviève Gésan-Guiziou
6.1	Introduction — 133
6.2	Whey types and composition —— 133
6.3	Concentration and demineralization of whey —— 135
6.4	Concentration of serum proteins —— 138
6.5	Fractionation of individual serum proteins —— 141
6.6	Development of new value-added products from whey —— 143
6.7	Conclusions and challenges —— 144
6.8	References —— 145
7	Integrated membrane processes in winemaking —— 147
7	Integrated membrane processes in winemaking —— 147 Youssef El Rayess and Martine Mietton-Peuchot
7	
	Youssef El Rayess and Martine Mietton-Peuchot
7.1	Youssef El Rayess and Martine Mietton-Peuchot Introduction —— 147
7.1 7.2	Youssef El Rayess and Martine Mietton-Peuchot Introduction —— 147 Crossflow microfiltration for must, wine and lees clarification —— 148
7.1 7.2 7.3	Youssef El Rayess and Martine Mietton-Peuchot Introduction — 147 Crossflow microfiltration for must, wine and lees clarification — 148 Electrodialysis and bipolar electrodialysis — 152
7.1 7.2 7.3 7.4	Youssef El Rayess and Martine Mietton-Peuchot Introduction — 147 Crossflow microfiltration for must, wine and lees clarification — 148 Electrodialysis and bipolar electrodialysis — 152 UF and NF for reduction of must sugars — 156
7.1 7.2 7.3 7.4 7.5	Youssef El Rayess and Martine Mietton-Peuchot Introduction — 147 Crossflow microfiltration for must, wine and lees clarification — 148 Electrodialysis and bipolar electrodialysis — 152 UF and NF for reduction of must sugars — 156 RO and NF for sugar must concentration — 157
7.1 7.2 7.3 7.4 7.5 7.6	Youssef El Rayess and Martine Mietton-Peuchot Introduction — 147 Crossflow microfiltration for must, wine and lees clarification — 148 Electrodialysis and bipolar electrodialysis — 152 UF and NF for reduction of must sugars — 156 RO and NF for sugar must concentration — 157 RO, NF and MC for wine dealcoholization — 158
7.1 7.2 7.3 7.4 7.5 7.6 7.7	Youssef El Rayess and Martine Mietton-Peuchot Introduction — 147 Crossflow microfiltration for must, wine and lees clarification — 148 Electrodialysis and bipolar electrodialysis — 152 UF and NF for reduction of must sugars — 156 RO and NF for sugar must concentration — 157 RO, NF and MC for wine dealcoholization — 158 Gas control by membrane processes — 160 References — 161 Membrane operations in the sugar and brewing industry — 163
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	Youssef El Rayess and Martine Mietton-Peuchot Introduction — 147 Crossflow microfiltration for must, wine and lees clarification — 148 Electrodialysis and bipolar electrodialysis — 152 UF and NF for reduction of must sugars — 156 RO and NF for sugar must concentration — 157 RO, NF and MC for wine dealcoholization — 158 Gas control by membrane processes — 160 References — 161
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	Youssef El Rayess and Martine Mietton-Peuchot Introduction — 147 Crossflow microfiltration for must, wine and lees clarification — 148 Electrodialysis and bipolar electrodialysis — 152 UF and NF for reduction of must sugars — 156 RO and NF for sugar must concentration — 157 RO, NF and MC for wine dealcoholization — 158 Gas control by membrane processes — 160 References — 161 Membrane operations in the sugar and brewing industry — 163
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	Youssef El Rayess and Martine Mietton-Peuchot Introduction — 147 Crossflow microfiltration for must, wine and lees clarification — 148 Electrodialysis and bipolar electrodialysis — 152 UF and NF for reduction of must sugars — 156 RO and NF for sugar must concentration — 157 RO, NF and MC for wine dealcoholization — 158 Gas control by membrane processes — 160 References — 161 Membrane operations in the sugar and brewing industry — 163 Frank Lipnizki and René Ruby-Figueroa Introduction — 163 Beet and cane sugar production — 163
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 8	Youssef El Rayess and Martine Mietton-Peuchot Introduction — 147 Crossflow microfiltration for must, wine and lees clarification — 148 Electrodialysis and bipolar electrodialysis — 152 UF and NF for reduction of must sugars — 156 RO and NF for sugar must concentration — 157 RO, NF and MC for wine dealcoholization — 158 Gas control by membrane processes — 160 References — 161 Membrane operations in the sugar and brewing industry — 163 Frank Lipnizki and René Ruby-Figueroa Introduction — 163
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 8 8.1 8.2	Youssef El Rayess and Martine Mietton-Peuchot Introduction — 147 Crossflow microfiltration for must, wine and lees clarification — 148 Electrodialysis and bipolar electrodialysis — 152 UF and NF for reduction of must sugars — 156 RO and NF for sugar must concentration — 157 RO, NF and MC for wine dealcoholization — 158 Gas control by membrane processes — 160 References — 161 Membrane operations in the sugar and brewing industry — 163 Frank Lipnizki and René Ruby-Figueroa Introduction — 163 Beet and cane sugar production — 163
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 8 8.1 8.2 8.2.1	Youssef El Rayess and Martine Mietton-Peuchot Introduction — 147 Crossflow microfiltration for must, wine and lees clarification — 148 Electrodialysis and bipolar electrodialysis — 152 UF and NF for reduction of must sugars — 156 RO and NF for sugar must concentration — 157 RO, NF and MC for wine dealcoholization — 158 Gas control by membrane processes — 160 References — 161 Membrane operations in the sugar and brewing industry — 163 Frank Lipnizki and René Ruby-Figueroa Introduction — 163 Beet and cane sugar production — 163 Membrane applications on beet sugar production — 164 Sugar beet press water and pulp recycling — 165 Raw juice purification — 167
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 8 8.1 8.2 8.2.1 8.2.1.1	Youssef El Rayess and Martine Mietton-Peuchot Introduction — 147 Crossflow microfiltration for must, wine and lees clarification — 148 Electrodialysis and bipolar electrodialysis — 152 UF and NF for reduction of must sugars — 156 RO and NF for sugar must concentration — 157 RO, NF and MC for wine dealcoholization — 158 Gas control by membrane processes — 160 References — 161 Membrane operations in the sugar and brewing industry — 163 Frank Lipnizki and René Ruby-Figueroa Introduction — 163 Beet and cane sugar production — 163 Membrane applications on beet sugar production — 164 Sugar beet press water and pulp recycling — 165
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 8 8.1 8.2 8.2.1 8.2.1.1	Youssef El Rayess and Martine Mietton-Peuchot Introduction — 147 Crossflow microfiltration for must, wine and lees clarification — 148 Electrodialysis and bipolar electrodialysis — 152 UF and NF for reduction of must sugars — 156 RO and NF for sugar must concentration — 157 RO, NF and MC for wine dealcoholization — 158 Gas control by membrane processes — 160 References — 161 Membrane operations in the sugar and brewing industry — 163 Frank Lipnizki and René Ruby-Figueroa Introduction — 163 Beet and cane sugar production — 163 Membrane applications on beet sugar production — 164 Sugar beet press water and pulp recycling — 165 Raw juice purification — 167

8.3.1	Raw sugar cane juice purification —— 176
8.3.2	Concentration of clarified cane juice —— 181
8.3.3	Molasses treatment —— 181
8.3.4	Decolorization of remelted raw sugar —— 182
8.4	The brewing industry —— 183
8.4.1	Membrane applications in the brewing process —— 185
8.4.1.1	Filtration in the lautering process —— 187
8.4.1.2	Beer clarification —— 188
8.4.1.3	Dealcoholization of beer —— 190
8.4.1.4	Beer from tank bottoms —— 193
8.5	Conclusions and outlook —— 194
8.5.1	Acknowledgements —— 195
8.6	References —— 195
9	Processing of stevioside using membrane-based
	separation processes — 201
	Sourav Mondal and Sirshendu De
9.1	Introduction —— 201
9.2	Physical and biological properties of steviol glycosides —— 203
9.3	Extraction methods of steviol glycosides —— 205
9.3.1	lon-exchange —— 205
9.3.2	Solvent extraction —— 205
9.3.3	Extraction by chelating agents —— 206
9.3.4	Adsorption and chromatographic separation —— 206
9.3.5	Ultrasonic extraction —— 206
9.3.6	Microwave-assisted extraction —— 206
9.3.7	Super critical fluid extraction (SCFE) —— 206
9.4	State-of-the-art membrane-based processes —— 207
9.5	Detailed membrane-based clarification processes —— 208
9.5.1	Hot water extraction —— 208
9.5.2	Selection of operating conditions and membrane —— 212
9.5.3	Crossflow ultrafiltration ——217
9.5.4	Nanofiltration —— 220
9.5.5	Diafiltration —— 222
9.6	References —— 226
10	Production of value-added soy protein products by membrane-based
	operations — 233
	Martin Mondor
10.1	Introduction —— 233
10.1.1	Soy as the most important source of plant protein ingredients —— 233
10.1.2	Production of soy protein isolates by isoelectric precipitation — 233

10.1.3	Soy bioactive peptides —— 234
10.2	Membrane technologies in the processing of soy protein
	products —— 235
10.2.1	Ultrafiltration —— 236
10.2.1.1	Membranes —— 237
10.2.1.2	Membrane fouling —— 237
10.2.1.3	Operating variables —— 238
10.2.2	Electrodialysis —— 239
10.2.2.1	Conventional electrodialysis —— 239
10.2.2.2	Bipolar membrane electrodialysis —— 241
10.2.3	Integrated electrodialysis-ultrafiltration process —— 243
10.3	Production of soy protein isolates by membrane technologies — 244
10.3.1	Ultrafiltration —— 244
10.3.1.1	Removal of undesirable components of soy protein extracts — 245
10.3.1.2	Production of soy protein isolate with a high amount of
	isoflavones —— 246
10.3.1.3	Functionality of soy protein isolate produced by ultrafiltration —— 247
10.3.2	Electrodialysis with bipolar membranes — 249
10.3.3	Electrodialysis with bipolar membranes in combination with
	ultrafiltration-diafiltration —— 251
10.4	Separation of soy peptides by membrane technologies —— 254
10.4.1	Ultrafiltration —— 255
10.4.2	Integrated electrodialysis – ultrafiltration approach —— 258
10.5	Concluding remarks and perspectives —— 261
10.5.1	Acknowledegments —— 262
10.6	References —— 262
11 C	oncentration of polyphenols by integrated membrane operations —— 269
Ir	en Tsibranska and Bartosz Tylkowski
11.1	Introduction —— 269
11.1.1	Beneficial effects of polyphenols —— 270
11.1.2	Separation/concentration of polyphenols by traditional
	methods —— 270
11.1.2.1	Separation of polyphenols at laboratory scale —— 271
11.1.2.2	Concentration of polyphenols at industrial scale —— 272
11.2	Concentration of polyphenols by integrated membrane
	operations — 272
11.2.1	Membrane processes for concentration of plant extracts —— 273
11.2.2	Membrane processes for concentration of juices — 281
11.2.3	Membrane processes for recovery/concentration of polyphenols from
	industrial waste waters (WW) —— 281
11.3	References — 289

12	Valorization of food processing streams for obtaining extracts enriched
	in biologically active compounds —— 295
	Carla Brazinha and Joao G. Crespo
12.1	Introduction —— 295
12.2	Market of the natural extracts ingredients — 295
12.3	Production of natural extracts – process and final product
	requirements —— 297
12.4	Fractionation, concentration and purification of BAC with
	membrane-processing techniques —— 300
12.4.1	Fractionation with pervaporation/vapor permeation —— 300
12.4.2	Extract fractionation and purification by nanofiltration — 302
12.5	Concluding remarks —— 306
12.6	References — 306
13	Biocatalytic membrane reactors for the production of nutraceuticals —— 311
	Lidietta Giorno, Rosalinda Mazzei and Emma Piacentini
13.1	Introduction —— 311
13.2	General aspects —— 313
13.3	Applications —— 316
13.3.1	Starch sugars —— 317
13.3.2	Fruit juices processing —— 317
13.3.3	Production of functional molecules and spices —— 318
13.3.4	Fats and oils —— 318
13.3.5	Alcoholic beverages —— 318
13.3.6	Water purification for food production —— 319
13.4	Conclusions — 321
13.5	References —— 322
14	Membrane emulsification in integrated processes for innovative food —— 323
	Catherine Charcosset
14.1	Introduction —— 323
14.2	Membrane emulsification —— 324
14.2.1	Configurations —— 324
14.2.2	Membranes —— 326
14.2.3	Influence of parameters —— 327
14.3	Applications —— 328
14.3.1	Simple emulsions —— 328
14.3.2	Multiple emulsions —— 329
14.3.3	Encapsulation —— 330
14.3.4	Aerated food gels —— 331
14.4	Integrated processes —— 331
14.4.1	Beverages —— 331

14.4.2	Dairy products —— 332
14.5	Conclusions —— 334
14.6	References —— 334
15	Electrodialysis in integrated processes for food applications 339
	Hélène Roux-de Balmann
15.1	Introduction —— 339
15.2	Principle of electrodialysis —— 339
15.2.1	Conventional electrodialysis (EDC) — 339
15.2.1.1	Membranes and stacks —— 339
15.2.1.2	Transfer mechanisms and modeling —— 341
15.2.2	Electrodialysis with bipolar membranes (EDBM) —— 343
15.2.2.1	Membranes and stacks —— 343
15.3	Food applications —— 345
15.3.1	Whey —— 345
15.3.2	Sugar and beverages industry —— 346
15.3.3	Wine —— 348
15.3.4	Organic acids —— 350
15.4	References —— 351

Index —— 353