Contents

Preface — v		
Ethan Akin		
Furstenberg	; Fractals —— 1	
1	Introduction —— 1	
2	Furstenberg Fractals —— 3	
3	The Fractal Constructions —— 9	
4	Density of Non-Recurrent Points —— 12	
5	Isometries and Furstenberg Fractals —— 14	
Idris Assani	and Kimberly Presser	
A Survey of	the Return Times Theorem —— 19	
1	Origins —— 19	
1.1	Averages along Subsequences —— 21	
1.2	Weighted Averages —— 23	
1.3	Wiener-Wintner Results —— 25	
2	Development —— 26	
2.1	The BFKO Proof of Bourgain's Return Times Theorem —— 27	
2.2	Extensions of the Return Times Theorem —— 29	
2.3	Unique Ergodicity and the Return Times Theorem —— 31	
2.4	A Joinings Proof of the Return Times Theorem —— 33	
3	The Multiterm Return Times Theorem —— 35	
3.1	Definitions —— 37	
4	Characteristic Factors —— 41	
4.1	Characteristic Factors and the Return Times Theorem —— 42	
5	Breaking the Duality —— 44	
5.1	Hilbert Transforms —— 45	
5.2	The (L^1, L^1) Case —— 48	
6	Other Notes on the Return Times Theorem —— 50	
6.1	The Sigma-Finite Case —— 50	
6.2	Recent Extensions —— 51	
6.3	Wiener-Wintner Dynamical Functions —— 52	
7	Conclusion —— 54	
Joseph Auslander Characterizations of Distal and Equicontinuous Extensions —— 59		

Zoltán Buczolich

Averages Along the Squares on the Torus ---- 67

1 Introduction and Statement of the Main Results —— 67

viii		Contents
2		Preliminary Results and Notation —— 69
3		Proofs of the Main Results —— 70
Nico	olas Cl	nevallier
Ste	pped H	lyperplane and Extension of the Three Distance Theorem —— 81
1		Introduction —— 81
2		Kwapisz's Result for Translation —— 82
3		Continued Fraction Expansions —— 84
3.1		Brun's Algorithm —— 84
3.2		Strong Convergence —— 86
4		Proof of Theorem 1.1 —— 87
5		Appendix: Proof of Theorem 2.4 and Stepped Hyperplane —— 88
Jear	ı-Pierr	e Conze and Jonathan Marco
Rem	arks	on Step Cocycles over Rotations, Centralizers and Coboundaries —— 93
1		Introduction —— 93
2		Preliminaries on Cocycles —— 94
2.1		Cocycles and Group Extension of Dynamical Systems —— 94
2.2		Essential Values, Nonregular Cocycle —— 95
2.3		\mathbb{Z}^2 -Actions and Centralizer —— 97
2.4		Case of an Irrational Rotation —— 98
3		Coboundary Equations for Irrational Rotations —— 100
3.1		Classical Results, Expansion in Basis $q_n \alpha$ — 101
3.2		Linear and Multiplicative Equations for $arphi_{eta}$ and $arphi_{eta,\gamma}$ —— 101
4		Applications —— 104
4.1		Non-Ergodic Cocycles with Ergodic Compact Quotients —— 104
4.2		Examples of Nontrivial and Trivial Centralizer — 106
4.3		Example of a Nontrivial Conjugacy in a Group Family —— 108
5		Appendix: Proof of Theorem 3.3 —— 109
Dan	iiela [Damjanović
	-	s Theorem for Smooth Lie Group Actions —— 117
1		Introduction —— 117
2		Preliminaries —— 118
2.1		Fréchet Spaces and Tame Operators —— 118
2.2		Hamilton's Nash-Moser Theorem for Exact Sequences —— 119
2.3		Cohomology —— 119
3		An Application of Hamilton's Nash–Moser Theorem for Exact Sequences
		to Lie Group Actions —— 120
3.1		The Set-Up —— 120
3.2		Tamely Split First Cohomology —— 121
3.3		Existence of Tame Splitting for the Complex $(Lin)_{(\lambda,H,\pi)}$ —— 122
3.4		A Perturbation Result —— 125
- · ·		

3.5	A Variation of Theorem 3.6 —— 126
4	Possible Applications —— 126
Krzyszt	of Frączek, Agata Piękniewska, and Dariusz Skrenty
Mixing	Automorphisms which are Markov Quasi-Equivalent but not Weakly
Isomor	phic —— 129
1	Introduction —— 129
2	Gaussian Automorphisms and Gaussian Cocycles —— 130
3	Coalescence of Two-Sided Cocycle Extensions —— 132
4	Main Result —— 134
joanna	Kułaga-Przymus
On the	Strong Convolution Singularity Property —— 139
1	Introduction —— 139
2	Definitions —— 142
2.1	Spectral Theory —— 142
2.2	Joinings —— 143
2.3	Special Flows —— 143
2.4	Continued Fractions —— 143
3	Tools —— 144
4	Smooth Flows on Surfaces —— 146
5	Results —— 147
5.1	New Tools – The Main Proposition —— 147
5.2	New Tools – Technical Details —— 148
5.3	Application —— 180
Carlos M	Matheus
Fractal (Geometry of Non-Uniformly Hyperbolic Horseshoes —— 197
1	Part I – A Survey on Homoclinic/Heteroclinic Bifurcations —— 197
1.1	Transverse Homoclinic Orbits and Smale's Horseshoes —— 199
1.2	Homoclinic Tangencies and Newhouse Phenomena —— 203
1.3	Homoclinic Bifurcations Associated to Thin Horseshoes —— 213
1.4	Homoclinic Bifurcations Associated to Fat Horseshoes and Stable
	Tangencies —— 218
1.5	Heteroclinic Bifurcations of Slightly Fat Horseshoes after J. Palis and
	JC. Yoccoz —— 220
1.6	A Global View on Palis-Yoccoz Induction Scheme —— 223
2	Part II – A Research Announcement on Non-Uniformly Hyperbolic
	Horseshoes —— 232
2.1	Hausdorff Dimension of the Stable Sets of Non-Uniformly Hyperbolic
	Horseshoes —— 233
2.2	Final Comments on Further Results —— 236

Omri Sa	arig and Martin Schmoll
Adic Flo	ows, Transversal Flows, and Horocycle Flows —— 241
1	Introduction —— 241
2	Adic Flows —— 243
2.1	Ergodic Properties of Adic Flows —— 251
3	Application to Horocycle Flows —— 252
3.1	The Compact Case —— 257
Kelly B.	Yancey
Uniforn	n Rigidity Sequences for Topologically Weakly Mixing
Homeo	morphisms —— 261
1	Introduction —— 261
2	Uniform Rigidity Sequences —— 263
2.1	Proof of Theorem 1.2 —— 264