Contents

Preface — v

1	Introduction —— 1
1.1	Flows and semiflows —— 1
1.2	Dissipative semiflows. Attractors —— 4
1.3	Invariant manifolds and slaving principle —— 5
1.4	Relatively simple behavior: gradient systems — 7
1.5	Monotone systems —— 10
1.6	Complicated large time behavior —— 12
1.6.1	General facts and ideas —— 12
1.6.2	Hyperbolic dynamics —— 15
1.6.3	Persistence of elementary hyperbolic sets —— 17
1.6.4	Chaotic dynamics —— 18
2	Complex dynamics in neural and genetic networks —— 22
2.1	Realization of vector fields (RVF) —— 23
2.1.1	Some definitions —— 23
2.1.2	Applications of RVF —— 24
2.2	General scheme of RVF method for evolution equations —— 25
2.3	Control of attractor and inertial dynamics for neural networks —— 29
2.3.1	Attractors for neural networks with discrete time —— 31
2.3.2	Graph growth —— 33
2.3.3	Dynamics of time discrete centralized networks —— 34
2.3.4	Bifurcations and chaos onset —— 36
2.3.5	Realization of <i>n</i> -dimensional maps by time discrete centralized networks —— 40
2.3.6	Attractors and inertial manifolds of the Hopfield system —— 41
2.4	Complex dynamics for Lotka-Volterra systems —— 43
2.4.1	Summary of the main results for the Lotka-Volterra system —— 44
2.4.2	Lotka-Volterra model with <i>n</i> resources —— 45
2.4.3	Change of variables —— 46
2.4.4	Properties of fields from G —— 47
2.4.5	Chaos in the Lotka-Volterra model with n resources —— 50
2.4.6	Lotka-Volterra systems generating Lorenz dynamics —— 51
2.4.7	Permanency and strong persistence —— 53
2.4.8	Strong persistency and chaos —— 56
2.4.9	Concluding remarks —— 58
2.5	Standard model —— 59
2.5.1	Model formulation —— 59

2.5.2	General properties of Standard model —— 60
2.5.3	Equilibria for the case of a single resource —— 61
2.5.4	Numerical results for the case of a single resource —— 62
2.5.5	Reductions of Standard model —— 63
2.6	Systems of chemical kinetics —— 66
2.6.1	Model —— 67
2.6.2	Decomposition —— 68
2.6.3	Reduction to shorted system by slow manifolds
	(quasiequilibria) —— 69
2.6.4	Control of slow dynamics —— 70
2.6.5	Checking oscillations, bifurcations, and chaos existence —— 74
2.6.6	Some numerical results. Why are networks large? —— 75
2.6.7	Algorithm —— 77
2.7	Quadratic systems —— 80
2.7.1	System (2.237) can be reduced to systems of Hopfield's type —— 80
2.7.2	Auxiliary approximation lemma —— 83
2.7.3	Invariant manifolds for the Hopfield system —— 84
2.8	Morphogenesis by genetic networks —— 87
2.8.1	Systems under consideration. Network models —— 87
2.8.2	Patterning problems —— 90
2.8.3	Patterning and hierarchical modular structure of genetic
	networks —— 92
2.8.4	Generation of complicated patterns —— 92
2.8.5	Approximation of reaction-diffusion systems by gene
	networks —— 94
2.9	Centralized gene networks —— 96
2.9.1	Existence of solutions —— 98
2.9.2	Reduced dynamics —— 99
2.9.3	Complex behavior in centralized gene networks —— 100
2.9.4	How positional information can be transformed into the body plan of a
	multicellular organism —— 102
2.9.5	Bifurcations of centralized network dynamics —— 104
2.10	Computational power of neural networks and graph growth —— 106
2.10.1	Realization of Turing machines by neural networks —— 106
2.10.2	Emergence of Turing machines by networks of a random
	structure —— 107
2.11	Appendix —— 110
2.11.1	Proof of Proposition 2.16 —— 110
2.11.2	Proof of Proposition 2.15 —— 111
2.11.3	A proof of Lemma 2.9 —— 112
2.11.4	Algorithm of neural dynamics control —— 114
2.12	Summary —— 115

3	Complex patterns and attractors for reaction-diffusion systems —— 117
3.1	Whitham method for dissipative systems —— 118
3.1.1	General ideas —— 118
3.1.2	Quasiequilibrium (QE) approximation and entropy —— 119
3.1.3	Applications to phase transition theory.
	Scalar Ginzburg-Landau equation —— 120
3.1.4	Pattern formation in Drosophila —— 124
3.2	Chaotic and periodic chemical waves —— 130
3.2.1	Introduction —— 130
3.2.2	A priori estimates, global existence and uniqueness —— 132
3.2.3	Invariant manifold —— 134
3.2.4	Coordinates in a neighborhood of M_0 —— 134
3.2.5	Change of variables —— 136
3.2.6	A priori estimates —— 138
3.2.7	Main theorem —— 140
3.2.8	Periodic and chaotic waves —— 142
3.2.9	Description of the model —— 143
3.2.10	Transformation of the equations —— 143
3.2.11	Existence of invariant manifolds —— 147
3.2.12	Existence of periodic and chaotic waves —— 147
3.3	Complicated large time behavior for reaction-diffusion systems of the
	Ginzburg–Landau type —— 150
3.3.1	Mathematical model and physical background —— 152
3.3.2	Control of kink dynamics —— 154
3.3.3	Control of interactions in Hopfield equations —— 156
3.3.4	Implementation of complicated dynamics and Turing machines —— 157
3.3.5	Memory and performance rate —— 157
3.4	Reaction-diffusion systems realizing all finite dimensional
	dynamics —— 158
3.4.1	Introduction —— 158
3.4.2	Statement of the problem —— 161
3.4.3	Function spaces —— 162
3.4.4	Assumptions to f and g — 163
3.4.5	Main results —— 165
3.4.6	Strategy of proof —— 167
3.4.7	Problem (3.118)–(3.124) defines a local semiflow ——— 169
3.4.8	Global semiflow existence —— 169
3.4.9	Construction of special linear operator L_N —— 170
3.4.10	Estimates for semigroups —— 173
3.4.11	Reduction to a system with fast and slow variables —— 176
3.4.12	Some preliminaries —— 178
2 4 12	·

3.4.14	Existence of the invariant manifold —— 181
3.4.15	Reduction of dynamics to the invariant manifold —— 183
3.4.16	Auxiliary estimates —— 184
3.4.17	Lemma on control of matrices M (property D) —— 186
3.4.18	Proof of theorems —— 188
3.4.19	Conclusion —— 189
3.5	Appendix: theorems on invariant manifolds —— 189
3.6	Summary —— 192
4	Random perturbations, evolution and complexity ——— 193
4.1	Introduction —— 193
4.1.1	Viability problem —— 194
4.1.2	Evolution, graphs and dynamical networks —— 195
4.1.3	Main problems and some ideas —— 197
4.2	Neural and genetic networks under random perturbations —— 198
4.2.1	Systems under consideration —— 198
4.2.2	Transition functions —— 199
4.2.3	Assumptions on random processes ξ —— 201
4.2.4	Evolution in the time discrete case —— 201
4.2.5	Assumptions to fluctuations in the time continuous case —— 203
4.2.6	Network viability under random fluctuations —— 205
4.2.7	Complexity —— 206
4.2.8	Evolution model for the time continuous case —— 206
4.3	Instability in random environment —— 207
4.3.1	Instability of circuits —— 207
4.3.2	Instability of time continuous systems —— 209
4.3.3	Viability for network models —— 210
4.4	Robustness, attractor complexity and functioning rate —— 216
4.4.1	Some toy models and numerical simulations —— 216
4.4.2	Reductions for the toy model —— 217
4.4.3	Multistationarity of the toy model —— 218
4.4.4	Robustness and the stability of attractors —— 220
4.4.5	Generalized toy model —— 221
4.4.6	Results of simulations —— 222
4.4.7	Why Empires fall —— 223
4.5	Evolution as a computational problem —— 226
4.5.1	Complex organ formation as a hard combinatorial problem —— 226
4.5.2	Some facts about the k-SAT model —— 228
4.5.3	Gene network model and morphogenesis —— 229
4.5.4	Evolution —— 230
4.5.5	Capacitors and centralized networks —— 231
4.5.6	Hebb rule and canalization —— 231

4.5.7	Canalization and decanalization as a phase transition. Passage through
	the bottleneck —— 233
4.5.8	Simulation of evolution and mutation effects —— 234
4.5.9	Other NP-complete problems in evolution —— 239
4.5.10	Evolution of circuit population —— 240
4.6	Kolmogorov complexity and genetic code —— 248
4.6.1	Model of evolution —— 248
4.6.2	Genetic code complexity —— 249
4.6.3	Viability and unviability —— 249
4.6.4	Proof of Theorem 4.24 on the complexity of gene code —— 251
4.7	Viability of reaction-diffusion systems —— 251
4.7.1	Statement of problem —— 253
4.7.2	Reaction-diffusion systems with random parameters —— 254
4.7.3	Existence of solutions of noisy systems —— 256
4.7.4	Unviability for generic noises g —— 256
4.7.5	Biological evolution and complexity —— 262
4.8	Synchronization in multicellular systems —— 265
4.8.1	General approach —— 265
4.8.2	Linear analysis of synchronization stability —— 268
4.8.3	Space discrete case —— 270
4.9	Summary —— 272
4.10	Appendix —— 273
4.10.1	Estimate of the number of genes m via complexity C_1 —— 275
4.10.2	Estimates of E and C_2 — 276

Bibliography —— 279

Index —— 293