Contents

1	Reading the Black-Scholes Formula in Terms of First and Last				
	Passage Times				
	1.1	Introduction and Notation			
		1.1.1	Basic Notation	1	
		1.1.2	Exponential Martingales and the Cameron-Martin Formula.	2	
		1.1.3	First and Last Passage Times	2	
		1.1.4	The Classical Black-Scholes Formula	3	
	1.2	The B	lack-Scholes Formula in Terms of First and Last Passage		
		Times		5	
		1.2.1	A New Expression for the Black-Scholes Formula	5	
		1.2.2	Comments	6	
		1.2.3	Proof of Theorem 1.2	7	
		1.2.4	On the Agreement Between the Classical Black-Scholes		
			Formula (Theorem 1.1) and our Result (Theorem 1.2)	10	
		1.2.5	A Remark on Theorem 1.2 and Time Inversion	11	
	1.3	Extension of Theorem 1.2 to an Arbitrary Index ν			
		1.3.1	Statement of the Main Result	13	
		1.3.2	Some Comments on Theorem 1.3	14	
		1.3.3	A Short Proof of Theorem 1.3	15	
	1.4	Another Formulation of the Black-Scholes Formula		16	
		1.4.1	Statement of the Result	16	
		1.4.2	First Proof of Theorem 1.4	16	
		1.4.3	A Second Proof of Theorem 1.4	17	
	1.5	Notes	and Comments	19	
2	Gen	eralize	d Black-Scholes Formulae for Martingales, in Terms of		
	Last Passage Times				
	2.1		ssion of the European Put Price in Terms of Last Passage		
		Times			
		2.1.1	Hypotheses and Notation	21	

xiii

xiv Contents

	2.1.2	Expression of $\Pi(K,t)$ in Terms of $\mathscr{G}_K^{(M)}$	22
	2.1.3	Proof of Theorem 2.1	22
2.2		ssion of the European Call Price in Terms of Last Passage	
		of the European Can Theo in Toring of East Tassage	24
	2.2.1	Hypotheses	24
	2.2.2	Price of a European Call in Terms of Last Passage Times	25
	2.2.3	Proof of Theorem 2.2	26
2.3	Some	Proof of Theorem 2.2	27
2.4	A Mo	re General Formula for the Computation of the Law of $\mathscr{G}_K^{(M)}$.	32
	2.4.1	Hypotheses	32
	2,4,2	Description of the Law of $\mathscr{G}_K^{(M)}$	33
	2.4.3	Some Examples of Applications of Theorem 2.3	34
2.5	Comp	utation of the Law of \mathscr{G}_K in the Framework of Transient	
		ions	37
	2.5.1	General Framework	37
	2.5.2	General Framework	38
	2.5.3	Case Where the Infinitesimal Generator is Given by its	
		Diffusion Coefficient and its Drift	39
2.6	-	utation of the Put Associated to a Càdlàg Martingale	
		ut Positive Jumps	41
	2.6.1	Notation	41
	2.6.2	Computation of the Put Associated to the Martingale	
		$(M_a^{(\nu)}, a \ge 0)$	42
	2.6.3	Computation of the Law of $\mathscr{G}_{K}^{(M^{(\nu)})}$	44
	2.6.4	A More Probabilistic Approach of Proposition 2.2	45
	2.6.5	An Application of Proposition 2.1 to the Local Times of	
		the Martingale $(\mathcal{E}_t, t \geq 0)$	49
2.7	The ca	$se M_{\infty} \neq 0$	50
	2.7.1	Hypotheses	50
	2.7.2	A Generalization of Theorem 2.1	51
	2.7.3	First Proof of Theorem 2.5	51
	2.7.4	A Second Proof of Theorem 2.5	52
	2.7.5	On the Law of $S_{\infty} := \sup_{t \to 0} M_t \dots$	53
2.8	Extens	sion of Theorem 2.1 to the Case of Orthogonal Local	
		gales	55
	2.8.1	Statement of the Main Result	55
	2.8.2	First Proof of Theorem 2.6, via Enlargement Theory	56
	2.8.3	Second Proof of Theorem 2.6, via Knight's Representation	
		of Orthogonal Continuous Martingales	57
	2.8.4	On the Law of $\bigvee \mathcal{G}_{K_i}^{(i)}$	59
20	Notes	i=1,···,n hi	63

Contents xv

3	Rep		tion of some particular Azèma supermartingales	
	3.1	A Gen	eral Representation Theorem	
		3.1.1	Introduction	
		3.1.2	General Framework	
		3.1.3	Statement of the Representation Theorem	66
		3.1.4	Application of the Representation Theorem 3.1 to the	
			Supermartingale $(\mathbb{P}(\mathscr{G}_K > t \mathscr{F}_t), t \geq 0)$, when $M_{\infty} = 0 \dots$	
		3.1.5	A Remark on Theorem 3.2	
	3.2	Study	of the Pre \mathscr{G}_K - and Post \mathscr{G}_K -processes, when $M_\infty = 0 \dots$	
		3.2.1	Enlargement of Filtration Formulae	. 70
		3.2.2	Study of the Post \mathcal{G}_K -Process	
		3.2.3	Study of the Pre \mathcal{G}_K -Process	. 72
		3.2.4	Some Predictable Compensators	. 73
		3.2.5	Expression of the Azéma supermartingale	
			$(\mathbb{P}(\mathscr{G}_K > t \mathscr{F}_t), t \geq 0)$ when $M_{\infty} \neq 0$. 76
		3.2.6	Computation of the Azéma Supermartingale	. 77
	3.3	A Wid	ler Framework: the Skorokhod Submartingales	. 78
		3.3.1	Introduction	. 78
		3.3.2	Skorokhod Submartingales	
		3.3.3	A Comparative Analysis of the Three Cases	. 81
		3.3.4	Two Situations Where the Measure Q Exists	. 82
	3.4	Notes	and Comments	. 87
_				
4			ing Family of Black-Scholes Perpetuities	
	4.1		uction	
		4.1.1	A First Example	
		4.1.2	Other Perpetuities	. 90
		4.1.3	A Family of Perpetuities Associated to the Black-Scholes	
			Formula	
		4.1.4	Notation	
		4.1.5	Reduction of the Study	. 92
		4.1.6	Scaling Properties	. 92
		4.1.7	General Case of the Brownian Exponential Martingale of	
			Index $\nu \neq 0$	
		4.1.8	Statement of the Main Results	
	4.2		s of Theorems 4.1, 4.2, 4.3 and 4.4	
		4.2.1	A First Proof of Theorem 4.1	
		4.2.2	Second Proof of Theorem 4.1	
		4.2.3	Proof of Theorem 4.2	
		4.2.4	Proof of Theorem 4.3	
		4.2.5	Proof of Theorem 4.4	. 102
	4.3		ptotic Behavior of $\mathbb{E}_1\left[\exp\left(-\frac{\theta}{2}\Sigma_1\right)\right]$ as $\theta\to\infty$	
	4.4	Extend	ding the Preceding Results to the Variables $\Sigma_k^{(\rho,x)}$. 106
	4.5	Notes	and Comments	. 113

xvi Contents

5	Stu		ast Passage Times up to a Finite Horizon	115
	5.1		of Last Passage Times up to a Finite Horizon for the	
		Brown	nian Motion with Drift	
		5.1.1	Introduction and Notation	
		5.1.2	Statement of our Main Result	116
		5.1.3	An Explicit Expression for the Law of $G_x^{(\nu)}(t)$	123
	5.2	Past-F	Future (Sub)-Martingales	127
		5.2.1	Definitions	
		5.2.2	Properties and Characterization of PFH-Functions	128
		5.2.3	Two Classes of PFH-Functions	131
		5.2.4	Another Characterization of PFH-Functions	131
		5.2.5	Description of Extremal PFH-Functions	133
	5.3	Notes	and Comments	
<u> </u>	Dest	0-4	I and Disability of the Carlos of States and Differential	1.40
6	6.1		as Joint Distribution Function in Strike and Maturity option as a Joint Distribution Function and Existence of	143
	0.1		o-Inverses	1/12
		6.1.1	Introduction	
		6.1.2	Seeing $\Pi_M(K,t)$ as a Function of 2 Variables	
		6.1.3	General Pattern of the Proof	
		6.1.4		
			A Useful Criterion	
	63	6.1.5	Outline of the Following Sections	143
	6.2	6.2.1	Black-Scholes Paradigm	140
		6.2.1	Statement of the Main Result	
			Descriptions of the Probability γ	149
		6.2.3	An Extension of Theorem 6.1	
		6.2.4	γ as a Signed Measure on $\mathbb{R}^+ \times \mathbb{R}^+$	
	6.3	Notes	and Comments	139
7	Exis	stence a	and Properties of Pseudo-Inverses for Bessel and Relate	d
	Pro	cesses .	~ 	161
	7.1	Introd	luction and Definition of a Pseudo-Inverse	161
		7.1.1	Motivations	161
		7.1.2	Definitions and Examples	162
		7.1.3	Aim of this Chapter	163
	7.2	Existe	ence of Pseudo-inverses for Bessel Processes	166
		7.2.1	Statement of our Main Result	166
		7.2.2	A Summary of some Results About Bessel Processes	167
		7.2.3	Proof of Theorem 7.1	172
		7.2.4	Interpretation in Terms of the Local Martingales	
			$(R_t^{-2\nu}, t \ge 0) \dots $	178
	7.3	Some	Properties of the r.v.'s $(Y_{x,y}^{(\nu)}, y > x) (\nu \ge -\frac{1}{2}) \dots$	
		7.3.1	The Main Theorem	179
		7.3.2		185

Contents xvii

	7.4	Two Extensions of Bessel Processes with Increasing
		Pseudo-Inverses
		Pseudo-Inverses
		7.4.2 Squares of Generalized Ornstein-Uhlenbeck Processes,
		also Called CIR Processes in Mathematical Finance 193
		7.4.3 A Third Example
	7.5	The More General Family $(Y_{x,y}^{(\nu,\alpha)}; x < y, \nu \ge 0, \alpha \in [0,1])$
		7.5.1 Some Useful Formulae
		7.5.1 Some Useful Formulae
		$(T^{(\nu+\theta,\nu)}, \nu > 0, \nu, \theta > 0)$
		7.5.3 Existence and Properties of $(Y_{x,y}^{(\nu,\alpha)}; x < y, \nu \ge 0, \alpha \in [0,1])$ 199
	7.6	Notes and Comments
	7.0	Notes and Comments
8	Exis	tence of Pseudo-Inverses for Diffusions
	8.1	Introduction
	8.2	Pseudo-Inverse for a Brownian Motion with a Convex,
		Decreasing, Positive Drift
	8.3	Study of a Family of \mathbb{R}^+ -Valued Diffusions
		8.3.1 Definition of the Operator T
		8.3.2 Study of the Family $(X^{(\alpha)})_{\alpha \geq 0}$
		8.3.3 Existence of a Pseudo-Inverse when $\alpha = 0 \dots 217$
	8.4	Existence of Pseudo-Inverses for a \mathbb{R}^+ -Valued Diffusion Started
		at 0
		8.4.1 Notations
		8.4.2 Biane's Transformation
		8.4.3 Existence of Pseudo-Inverses
		8.4.4 A Second Proof of Theorem 8.3
	8.5	Some Consequences of the Existence of Pseudo-Inverses
		8.5.1 Another Relation Between the Processes X and \overline{X} Started
		from 0
		8.5.2 A Time Reversal Relationship
	0.6	8.5.3 Back to the Family $(X^{(\alpha)})_{\alpha \geq 0}$
	8.6	Notes and Comments
A	Con	nplements
-	A.1	Study of the Call Associated to a Strict Local Martingale (see
		Yen-Yor [93])
		A.1.1 Introduction
		A.1.2 Main Results
		A.1.3 An Extension
	A.2	Measuring the "Non-Stopping Timeness" of Ends of Previsible
		Sets (see Yen-Yor, [92])
		A.2.1 About Ends of Previsible Sets
		A.2.2 Some Criterions to Measure the NST

xviii Contents

		A.2.3 Computations of Several Examples of Functions $m_L(t)$	244
	A.3	Some Connexions with Dupire's Formula	246
		A.3.1 Dupire's Formula (see [20, F])	
		A.3.2 Extension of Dupire's Formula to a General Martingale	
		in $\mathcal{M}_{+}^{0,c}$	246
		A.3.3 A Formula Relative to Lévy Processes Without Positive	
		Jumps	248
В	Bess	sel Functions and Bessel Processes	251
	B. 1	Bessel Functions (see [46], p. 108-136)	251
	B.2	Squared Bessel Processes (see [70] Chapter XI, or [26])	
		B.2.1 Definition of Squared Bessel Processes	
		B.2.2 BESQ as a Diffusion	
		B.2.3 Brownian Local Times and BESQ Processes	254
	B.3	Bessel Processes (see [70] Chapter XI, or [26])	255
		B.3.1 Definition	255
		B.3.2 An Implicit Representation in Terms of Geometric	
		Brownian Motions	256
Ref	erenc	es	259
Fur	ther l	Readings	265
Ind	ex		269