Contents

1	Introduc	ction	1	
	1.1 Key	Contributions	6	
	1.2 Pub	dications	6	
	1.3 Add	litional Material	9	
	1.4 Coll	aborations	9	
	1.5 Sym	abols and Notation	10	
	1.6 Acre	onyms	11	
2	Basics			
		del Learning	13	
	2.1.1	Regression	13	
	2.1.2	Classification	19	
	2.1.3	Dimensionality Reduction	22	
	2.1.4	Clustering	24	
	2.2 Mod	del Comparison and Model Selection	26	
	2.2.1	Root Mean Square Error	26	
	2.2.2	Data Likelihood	27	
	2.2.3	Cross-Validation	28	
	2.2.4	Bayesian Model Comparison	29	
	2.3 Gra	phical Models	30	
	2.4 Sum	nmary	33	
3	Body So	chema Learning	35	
		ematic Models for Manipulation Robots	37	
	3.2 A B	Sayesian Framework for Body Schema Learning	40	
	3.2.1	Local Models	41	
	3.2.2	Learning a Factorized Full Body Model	43	
	3.2.3	Pose Prediction and End-Effector Pose Control	4 9	
	3.3 Fail	ure Awareness and Life-Long Adaptation	51	
	3.4 Exp	periments	53	
	3.4.1	Evaluation of Model Accuracy	54	
	3.4.2	Recovery from a Blocked Joint	56	
	3.4.3	Tool Use	57	
	3.4.4	Controlling a Deformed Robot	60 60	
	3.5 Related Work and Discussion			
	3.6 Sun	nmary	62	

4	Learning Kinematic Models of Articulated Objects	65
	4.1 Unified Framework for Learning Kinematic Models	67
	4.1.1 Model Fitting	72
	4.1.2 Model Evaluation	76
	4.1.3 Model and Structure Selection	77
	4.2 Framework Extensions	79
	4.3 Perception and Control of Articulated Objects	86
	4.4 Experiments	88
	4.4.1 Model Estimation and Model Selection	89
	4.4.2 Operating Articulated Objects with a Mobile	
	Manipulator	95
	4.4.3 Detecting Kinematic Loops	
	4.4.4 Robustness and Convergence Analysis	
	4.5 Related Work and Discussion	
	4.6 Summary	111
5	Vision-Based Perception of Articulated Objects	113
	5.1 Marker-Less Pose Estimation	
	5.1.1 Fast Processing of Depth Images	114
	5.1.2 Pose Estimation	
	5.1.3 Pose Tracking	118
	5.2 Experiments	
	5.2.1 Evaluation of Detection Rate and Pose Accuracy	119
	5.2.2 Kinematic Model Learning	121
	5.3 Related Work and Discussion	123
	5.4 Summary	124
6	Object Recognition Using Tactile Sensors	125
Ŭ	6.1 The Bag-of-Features Model	
	6.1.1 Unsupervised Creation of a Tactile Vocabulary	
	6.1.2 Learning the Feature Histograms	
	6.1.3 Object Classification	
	6.2 Selecting Observation Actions	
	6.3 Experiments	
	6.3.1 Vocabulary and Codebook Creation	
	6.3.2 Recognition Rates	
	6.3.3 Active Perception	137
	6.4 Related Work and Discussion	137
	6.5 Summary	139
7	Object State Estimation Using Tactile Sensors	141
•	7.1 Generic Tactile Features for State Estimation	
	7.1.1 Feature Extraction	
	7.1.2 Decision Tree Classifier	
	7.1.3 Experiments	

	7.2 Comparative Human Study		
	7.3 High-Frequency Tactile Feature for State Estimation 151		
	7.3.1 Training Data		
	7.3.2 Feature Extraction		
	7.3.3 Experiments		
	7.4 Related Work and Discussion		
	7.5 Summary		
8	Learning Manipulation Tasks by Demonstration 161		
	8.1 Modeling Manipulation Tasks		
	8.1.1 Learning Task Descriptions from Human		
	Demonstrations		
	8.1.2 Reproducing Tasks		
	8.2 Experiments		
	8.2.1 Imitating Human Actions		
	8.2.2 Dealing with Obstacles during Imitation 171		
	8.2.3 Imitation by Planning		
	8.3 Related Work and Discussion		
	8.4 Summary		
9	Conclusions		
	9.1 Future Work		
A	The Laplace Approximation		
В	B Derivation of the Bayesian Information Criterion 187		
Re	eferences		
In	dex		