Contents

1	Introduction	1
2	Point Fitting Problems in One and Two Dimensions	5
	2.1 Point Fitting Problems in One Dimension	5
	2.2 Point Fitting Problems in Two Dimensions	7
	2.3 Truncated Point Fitting Problems in Two Dimensions	8
	References	9
3	The Hyperplane Fitting Problem in Two or More Dimensions	11
	3.1 Line Fitting Problems in Two Dimensions	11
	3.2 Hyperplane Fitting Problems in Higher Dimensions	12
	3.3 Matrix Representation of the Problem	13
	3.4 The Weighted L_1 -Norm and L_{∞} -Norm Fitting Problems	14
	3.5 Relation to the L_2 -Norm Fitting Problem	18
	References	19
4	Linear Programming Computations	21
	4.1 Regular and Projective Geometry Solutions	
	of the L_1 -Norm Problem	21
	4.2 Projective Geometry Solution of the L_{∞} -Norm Problem	23
	4.3 Linear Programming Computations	23
	4.4 A Hypothetical General Procedure	24
	4.5 Non-Uniqueness of the Solution	25
	References	27
5	Statistical Theory	31
	5.1 Linear Statistical Model	31
	5.2 Maximum Likelihood Estimation	32
	5.3 Asymptotic Theory	33

		Conten	+0
'1		Conten	us
•			

	5.4	Pseudo-Unbiased Weighted L_1 -Norm Procedures	34
	5.5	Pseudo-Unbiased Weighted L_{∞} -Norm Procedures	35
	Refe	erences	36
6	The	Least Median of Squared Residuals Procedure	37
	6.1	Robustness to Outliers	37
	6.2	Gauss's Optimality Conditions	38
	6.3	Least Median of Squares Computations	38
	6.4	Minimum Volume Ellipsoid	39
		erences	40
7	Med	chanical Representations	43
	7.1	Introduction	43
	7.2	Fitting a Point to a Set of Points in the Plane of Observations:	
		Fermat's Problem	44
	7.3	Fitting a Line to a Set of Points in the Plane of Observations: Boscovich's Problem	46
	7.4	Fitting a Point to a Set of Lines in the Plane of Parameters:	
	7.1	L ₁ -Norm Variants of Donkin's Problem	48
	7.5	Fitting a Point to a Set of Lines in the Plane of Observations:	
	7.5	Oja's Bivariate Median	50
	7.6	L_2 -Norm Mechanical Models	52
	7.7	L_2 -Norm and LMS Mechanical Models	54
			55
	Kere	erences	55
Αı	uthor	Index	57