Contents

1	Exc	itons and Biexcitons in Semiconductors	1
	1.1	The Electronic Structure of Excitons	1
	1.2	Classification of the Exciton States	12
	1.3	Lenard–Dyson Theorem	14
	1.4	Effects of Exciton–Exciton Interaction	16
	1.5	Excitons Captured by Isoelectronic Impurities	23
2	Exc	iton Paramagnetic, Paraelectric, and Zero-Field Resonances	27
	2.1	Paramagnetic Resonance of Small-Radius Triplet Excitons	29
	2.2	Spin-Dependent Intraband Scattering of Triplet Wannier-Mott	
		Excitons on Phonons	32
	2.3	Contribution of Hyperfine Interaction to Exciton Paramagnetic	
		Resonance Linewidth	37
	2.4	Generation of Coherent Electromagnetic Radiation at Intra-	
		and Interseries Exciton Transitions	40
	2.5	Generation of Coherent Magnons in Magnetic Semiconductors	47
	2.6	Exciton Paraelectric Resonance	53
	2.7	Isotopic Shift of Exciton Paraelectric Resonance in Cu ₂ O Crystals	58
3	Exc	iton Acoustic Resonance	65
	3.1	The Effect of Lattice Vibrations and Free Carriers on Ultrasonic	
		Attenuation in Crystals	66
	3.2	Resonant Absorption of Hypersound at Intraband Exciton	
		Scattering on Phonons	69
	3.3	Resonant Absorption of Hypersound During Transitions Between	
		Exciton Subbands	71
	3.4	Induced Instability in a System of Excitons and Strictly Resonant	
		Hypersonic Phonons	77
	3.5	Phonon Maser on the Exciton Transitions	81
	3.6	Resonance Absorption of Hypersound by Biexcitons	85

χv

xvi Contents

4	Dou	ble Resonances	. 89
	4.1	Pikus-Luttinger Method of Invariants and Its Applications to ENDOR and Acoustical ENDOR	. 90
	4.2	One-Phonon Spin-Lattice Relaxation and Acoustically Nonequivalent Nuclei	. 105
	4.3	Localized Biexcitons in the Crystal GaP:N	
	4.4	Exchange and Magnetic Dipole–Dipole Interaction Between Holes in the Localized Biexciton	
	4.5	Double Hole–Nuclear Resonance on Localized Biexcitons in the Crystal GaP:N	
	4.6	Double Radio-Optical Exciton Resonance	
5	Inve	estigation of Excitons by NMR Spectroscopy Methods	. 125
	5.1	Relaxation of Nuclear Spin via Triplet Excitons	. 125
	5.2	Exciton Knight Shift of NMR Lines	. 130
	5.3	NMR Evidence of Bose–Einstein Condensation of Excitons	. 132
	5.4	Relaxation of Nuclear Spin via Orthobiexcitons	. 135
	5.5	Partial Averaging of the Exciton-Exciton Interaction Under	
		Influence of Terasound	
6		eraction of Excitons with Paramagnetic Centers	. 147
	6.1	Spin Relaxation of Deep Centers in Semiconductors via Singlet and Triplet Excitons	. 148
	6.2	Relaxation of Paramagnetic Centers via $\Gamma_6 \otimes \Gamma_8 \otimes \Gamma_1$ Excitons in Cubic Crystals	. 151
	6.3	Shortening of Spin Relaxation Time of Paramagnetic Centers due to Interaction with Excitons	
	6.4	Indirect Interaction of the Paramagnetic Centers via Excitons	
	6.5	The Effect of Giant Spin Splitting of the Exciton Band in Diluted	
		Magnetic Semiconductors	. 161
	6.6	Giant Magneto-Optical Effects in Diluted Magnetic Semiconductors	. 163
7	Effe	ects of Deep Saturation	171
•	7.1	Unsteady States of Quantum Systems	
	7.2	Unsteady States of Excitons at Interband Scattering	
	7.2	on High-Density Hypersonic Phonons	. 1/6
	7.3	Unsteady States of Excitons at Intraband Scattering on High-Density Hypersonic Phonons	. 179
	7.4	Quasi-Energy Spectrum for a System with Equidistant Energy	
		Levels	. 18
8		ics of Quantum Information Processing	
	8.1	Information and Physics	
	8.2	Quantum Information	
	8.3	Quantum Bits	
	8.4	The Network Model of Quantum Information Processing	. 193

		Quantum Gates for Single Qubits194Two-Qubit Operations195Robust Gate Operations197Initialization and Readout198Decoherence198Quantum Communication199Quantum Computing with Bose Operators200
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7	Systems for Quantum Information Processing207Requirements207Semiconductor Quantum Dots209The Diamond Nitrogen-Vacancy Center21131 P in Silicon214Endohedral Fullerenes217Rare-Earth Ions219Molecular Magnets222
10		clusions
		A Irreducible Tensor Operators $Y_M^L(\mathcal{I})$
App	of B	K B Matrix of Unitary Operator U Defined by Means asis Function Operators of the Irreducible Representations e Symmetry Point Groups
App		C Color Symmetry and Time Reversal in Systems Half-Integer Total Spin [392]
App		zama zameger zoma opan (e>=1 · · · · · · · · · · · · · · · · · · ·
	endix	• •
App	endix endix	α D Operators ξ and η
• •		α D Operators ξ and η
App	endix	α D Operators ξ and η 237 α E The Functions f_{kj} 241 α F The Wave Functions $\Phi_M^J(ll')$ 245
App App	endiz endiz endiz endiz	α D Operators ξ and η 237 α E The Functions f_{kj} 241 α F The Wave Functions $\Phi_M^J(ll')$ 245 α G Integral $I(s,t)$ 249
Арр Арр Арр	oendix oendix oendix oendix Repr	${}^{\prime}$ D Operators ξ and η
App App App	oendix oendix oendix Repi ssary	A D Operators ξ and η