Contents

L	Mod	Modern Steelmaking in Electric Arc Furnaces:			
	Hist	ory and	d Development	1	
	1.1	Gener	al Requirements to Steelmaking Units	1	
		1.1.1	Process Requirements	2	
		1.1.2	Economic Requirements	2	
		1.1.3	Environmental and Health and Safety Requirements	5	
	1.2	High-	Power Furnaces: Issues of Power Engineering	7	
		1.2.1	Increasing Power of EAF Transformers	7	
		1.2.2	Specifics of Furnace Electrical Circuit	8	
		1.2.3	Optimum Electrical Mode of the Heat	11	
		1.2.4	Direct Current Furnaces	12	
		1.2.5	Problems of Energy Supply	13	
	1.3	The M	Most Important Energy and Technology Innovations	14	
		1.3.1	Intensive Use of Oxygen, Carbon and Chemical Heat	14	
		1.3.2	Foamed Slag Method	15	
		1.3.3	Furnace Operation with Hot Heel	18	
		1.3.4	Single Scrap Charging	18	
		1.3.5	Use of Hot Metal and Reduced Iron	19	
		1.3.6	Post-Combustion of CO Above the Bath	20	
		1.3.7	Increase in Capacity of Furnaces	21	
		1.3.8	Continuous Charging and Melting of Scrap		
			in the Liquid Bath	22	
	Refe	rences	· · · · · · · · · · · · · · · · · · ·	24	
2	Elec	tric Ar	rc Furnace as Thermoenergetical Unit	25	
	2.1	Thern	nal Performance of Furnace: Terminology		
		and D	Designations	25	
	2.2	Extern	nal and Internal Sources of Thermal Energy:		
		Usefu	ll Heat	27	
	2.3	Factor	rs Limiting the Power of External Sources	28	
	2.4	Key F	Role of Heat Transfer Processes	29	
Reference.				31	

3			mental Laws and Calculating Formulae ansfer Processes	33
	3.1		Ways of Heat Transfer: General Concepts	33
	3.2		action Heat Transfer	34
	3.2	3.2.1	Fourier's Law. Flat Uniform Wall.	
		3.2.1	Electrical—Thermal Analogy	34
		3.2.2	Coefficient of Thermal Conductivity	37
		3.2.3	Multi-Layer Flat Wall	39
		3.2.4	Contact Thermal Resistance	41
		3.2.5	Uniform Cylindrical Wall	42
		3.2.6	Multi-Layer Cylindrical Wall	43
		3.2.7	Simplifying of Formulae for Calculation	
		0.2	of Cylindrical Walls	44
		3.2.8	Bodies of Complex Shape: Concept of Numerical	
			Methods of Calculating Stationary	
			and Non-Stationary Conduction Heat Transfer	45
	3.3	Conve	ective Heat Exchange	49
		3.3.1	Newton's Law: Coefficient of Heat Transfer α	49
		3.3.2	Two Modes of Fluid Motion	50
		3.3.3	Boundary Layer	50
		3.3.4	Free (Natural) Convection	52
		3.3.5	Convective Heat Transfer at Forced Motion	53
		3.3.6	Heat Transfer Between Two Fluid Flows Through	
			Dividing Wall; Heat Transfer Coefficient k	55
	3.4	Heat 1	Radiation and Radiant Heat Exchange	58
		3.4.1	General Concepts	58
		3.4.2	Stefan-Boltzmann Law; Radiation Density;	
			Body Emissivity	59
		3.4.3	Heat Radiation of Gases	62
		3.4.4	Heat Exchange Between Parallel Surfaces	
			in Transparent Medium: Effect of Screens	63
		3.4.5	Heat Exchange Between the Body and Its Envelope:	
			Transparent Medium	65
		3.4.6	Heat Exchange Between the Emitting Gas	
			and the Envelope	66
4	Energy (Heat) Balances of Furnace			
	4.1		ral Concepts	67
	4.2		Balances of Different Zones of the Furnace	69
	4.3		ple of Heat Balance in Modern Furnace	71
	4.4	-	sis of Separate Items of Balance Equations	72
		4.4.1	Output Items of Balance	72
		4.4.2	Input Items of Balance	75

75

Contents xi

	4.5	Chem	ical Energy Determination Methods	70
		4.5.1	Utilization of Material Balance Data	76
		4.5.2	About the So-Called "Energy Equivalent" of Oxygen	76
		4.5.3	Calculation of Thermal Effects of Chemical Reactions	
			by Method of Total Enthalpies	7
	Refe	erences		82
5	Ene	rov Eff	iciency Criteria of EAFs	8:
	5.1		ninary Considerations	8:
	5.2		non Energy Efficiency Coefficient of EAF	0.
•	5.2		s Deficiencies	8′
	5.3		fic Coefficients η for Estimation of Energy Efficiency	
			parate Energy Sources and EAF as a Whole	89
	5.4		mining Specific Coefficients η	9:
	2	5.4.1	Electrical Energy Efficiency Coefficient η_{EL}	9:
		5.4.2	Fuel Energy Efficiency Coefficient of Oxy-Gas	-
		52	Burners η_{NG}	93
		5.4.3	Energy Efficiency Coefficient of Coke Charged Along	
		5.1.5	with Scrap	94
		5.4.4	Determining the Specific Coefficients η by the Method	
		5	of Inverse Heat Balances	9:
	5.5	Tasks	of Practical Uses of Specific Coefficients η	9:
				9'
	rtort	or crices		
6	Prel	Preheating of Scrap by Offgases in Combination with Burners		
	6.1	Potent	tials and Limiting Factors	99
		6.1.1	Expediency of Heating	99
		6.1.2	Comparison of Consumptions of Useful Heat	
			for Scrap Heating, Scrap Meltdown, and for Heating	
			of Metal up to Tapping Temperature	100
		6.1.3	Reduction in Electrical Energy Consumption	
			with High-Temperature Heating of Scrap:	
			Calculation of Potentials	10
		6.1.4	Sample of Realization of High-Temperature Heating:	
			Process BBC-Brusa	102
		6.1.5	Specifics of Furnace Scrap Hampering Its Heating	10.
	6.2	Heatir	ng on Conveyor	10:
		6.2.1	Consteel Furnaces with Continuous Scrap Charging	
			into the Bath	10:
		6.2.2	Comparison of Melting Rates, Productivities,	
			and Electrical Energy Consumptions Between	
			the Consteel Furnaces and EAFs	100
		6.2.3	Scrap Preheating Temperature	109

xii Contents

	6.3	Heatin	ng Scrap in a Large-Thickness Layer	111			
		6.3.1	Heat Transfer Processes	111			
		6.3.2	Heating Scrap in Baskets and Special Buckets	114			
		6.3.3	Twin-Shell Furnaces with Removal of Off-Gas				
			Through the Second Bath	118			
	6.4	Heatin	ng Scrap in Shaft Furnaces	120			
		6.4.1	Shaft Furnaces with Fingers Retaining Scrap	120			
		6.4.2	Shaft Furnaces with Continuous Scrap Charging				
			into the Liquid Bath by Pushers	122			
	6.5	From	Utilizing Off-Gases to Scrap Preheating				
			rners Only	126			
	Refe			127			
7	Rep	laceme	nt of Electric Arcs with High Power				
			urners	129			
	7.1	Attem	pts for Complete Replacement	129			
	7.2		tialities of Existing Burners: Heat Transfer,				
			ing Factors	131			
	7.3		Power Rotary Burners (HPR-Burners)	134			
		7.3.1	Fundamental Features	134			
		7.3.2	Slag Door Burners: Effectiveness				
			of Flame-Direction Changes	134			
		7.3.3	Roof Burners	136			
		7.3.4	Oriel Burners	138			
		7.3.5	Sidewall Burners	140			
	7.4	Two-S	Stage Process of the Heat with Use of HPR Burners:				
		Indust	trial Trials	143			
		7.4.1	General Energy Ratios	143			
		7.4.2	Process with a Door Burner in 6-ton Furnaces	145			
		7.4.3	Process with Roof Burners in 100-ton				
			and 200-ton Furnaces	148			
	7.5	Fuel A	Arc Furnaces (FAFs)	151			
		7.5.1	FAF with Scrap Heating in a Furnace Freeboard	151			
		7.5.2	Conveyor FAFs with Continuous Scrap Charging				
			into the Liquid Bath	153			
		7.5.3	Shaft FAFs with Continuous Scrap Charging				
			by a Pusher	155			
	7.6	Econo	omy of Replacement of Electrical Energy with Fuel	157			
	Refe	rences		160			
c	ъ.	· Di					
8		Basic Physical—Chemical Processes in Liquid Bath Blown with Oxygen: Process Mechanisms					
	8.1		rocess Mechanisms	161			
	8.2		ttion of Carbon	163			
	0.4	ONIUG	mon or caroon	100			

Contents

xiii

	8.3	Melting of Scrap	164
	8.4	Heating of the Bath	166
9	Bath	Stirring and Splashing During Oxygen Blowing	169
	9.1	Stirring Intensity: Methods and Results of Measurement	169
	9.2	Mechanisms of Bath Stirring	170
		9.2.1 Stirring Through Circulation and Pulsation	170
		9.2.2 Stirring by Oxygen Jets and CO Bubbles	171
	9.3	Factors Limiting Intensity of Bath Oxygen Blowing	
		in Electric Arc Furnaces	172
		9.3.1 Iron Oxidation: Effect of Stirring	172
		9.3.2 Bath Splashing	174
	9.4	Oxygen Jets as a Key to Controlling Processes in the Bath	177
	Refe	rences	178
10	Jet S	Streams: Fundamental Laws and Calculation Formulae	179
		Jet Momentum	179
		Flooded Free Turbulent Jet: Formation Mechanism	
		and Basic Principles	180
	10.3	Subsonic Jets: Cylindrical and Tapered Nozzles	182
		Supersonic Jets and Nozzles: Operation Modes	186
		Simplified Formulae for Calculations of High-Velocity	
		Oxygen Jets and Supersonic Nozzles	188
		10.5.1 A Limiting Value of Jets' Velocity	190
	10.6	Long Range of Jets	191
		rence	191
11	Devi	ces for Blowing of Oxygen and Carbon into the Bath	193
	11.1	Blowing by Consumable Pipes Submerged into Melt	
		and by Mobile Water-Cooled Tuyeres	193
		11.1.1 Manually Operated Blowing Through	
		Consumable Pipes	194
		11.1.2 BSE Manipulator	194
		11.1.3 Mobile Water-Cooled Tuyeres	196
	11.2	Jet Modules: Design, Operating Modes, Reliability	199
		11.2.1 Increase in Oxygen Jets Long Range: Coherent Jets	201
		11.2.2 Effectiveness of Use of Oxygen, Carbon, and Natural	
		Gas in the Modules	203
	11.3	Blowing by Tuyeres Installed in the Bottom Lining	205
		11.3.1 Converter-Type Non-Water-Cooled Tuyeres	205
		11.3.2 Tuyeres Cooled by Evaporation of Atomized Water	207
		11.3.3 Explosion-Proof Highly Durable Water-Cooled	
		Tuyeres for Deep Blowing	209
	Refe	rences	214

xiv Contents

12	Wate	er-Cooled Furnace Elements	215			
	12.1	Preliminary Considerations	215			
	12.2	Thermal Performance of Elements: Basic Laws	215			
	12.3	3 Principles of Calculation and Design of Water-Cooled				
		Elements	219			
		12.3.1 Determining of Heat Flux Rates	219			
		12.3.2 Minimum Necessary Water Flow Rate	221			
		12.3.3 Critical Zone of the Element	222			
		12.3.4 Temperature of Water-Cooled Surfaces	222			
		12.3.5 Temperature of External Surfaces	225			
		12.3.6 General Diagram of Element Calculation	226			
		12.3.7 Hydraulic Resistance of Elements	226			
	12.4	Examples of Calculation Analysis of Thermal Performance				
		of Elements	229			
		12.4.1 Mobile Oxygen Tuyere	229			
		12.4.2 Elements with Pipes Cast into Copper Body				
		and with Channels	231			
		12.4.3 Jet Cooling of the Elements	234			
		12.4.4 Oxygen Tuyere for Deep Blowing of the Bath	235			
	Refe	rences	237			
13	Prin	ciples of Automation of Heat Control	239			
10		Preliminary Considerations	239			
		Automated Management Systems	239			
	13.2	13.2.1 Use of Accumulated Information: Static Control	239			
		13.2.2 Mathematical Simulation as Method of Control	240			
		13.2.3 Dynamic Control: Use of On-line Data	243			
	13 3	Rational Degree of Automation	249			
		rences	250			
	recio		200			
14	Off-	Gas Evacuation and Environmental Protection	251			
	14.1	Preliminary Considerations	251			
	14.2	Formation and Characteristics of Dust-Gas Emissions	251			
		14.2.1 Sources of Emissions	251			
		14.2.2 Primary and Secondary Emissions	252			
		14.2.3 Composition, Temperature, and Heat Content				
		of Off-Gases	253			
	14.3	Capturing Emissions: Preparing Emissions for Cleaning				
		in Bag Filters	255			
		14.3.1 General Description of the System	255			
		14.3.2 Problems of Toxic Emissions	256			
		14.3.3 A Simplified Method of Gas Parameters' Calculation				
		in the Direct Evacuation System	259			
		14.3.4 Energy Problems	268			

xv

14.4 Use of Air Curtains	
Index	277