

Contents

Preface	V
Acknowledgements	IX
About the Authors	XIX
List of Symbols.....	XXI
Abbreviations	XXV
1 Experiences with the Optimum Design of Steel Structures	1
1.1 Introduction	1
1.2 Foundation of the School for Structural Optimization at the University of Miskolc	2
1.3 Derivation of the Structural Optimization System.....	2
1.4 Advantages and Disadvantages of Two Different Design Methods	5
1.4.1 - Design by Routine.....	5
1.4.2 Optimum Design	6
1.5 The Problem of the Interaction of Two Instabilities	6
1.6 Detailed Results for Different Structural Types.....	7
1.6.1 Compressed and Bent Columns Constructed from Stiffened Shell or from Square Box Walls of Stiffened Plates	7
1.6.2 Stiffened or Cellular Plate Supported at Four Corners Subject to a Uniformly Distributed Normal Load (Fig.1.4)	9
1.6.3 A Wind Turbine Tower Constructed as a Shell or Tubular Truss Structure	9
1.7 Survey of Selected Literature of the Optimum Design of Steel Structures	11
1.7.1 Truss Structures.....	11
1.7.2 Building Frames	11
1.7.3 Industrial Applications	11
1.8 Conclusions	13
2 Newer Mathematical Methods in Structural Optimization	15
2.1 Introduction	15
2.2 Firefly Algorithm.....	16
2.3 Particle Swarm Optimization Algorithm	19
2.3.1 The PSO Algorithm.....	19
2.3.2 Modification of PSO Algorithm with Gradient Estimation.....	21
2.3.3 Comparing the Standard PSO and the Modified PSO (GPSO).....	23
2.4 The IOSO Technique	24

2.4.1	Main Features of IOSO Technology	24
2.4.2	Testing of the Method	25
2.4.3	Novelty and Distinctive Features of IOSO	27
3	Cost Calculations	29
3.1	Introduction	29
3.2	The Cost Function	29
3.2.1	The Cost of Materials	30
3.2.2	The Fabrication Cost in General	30
3.2.2.1	Fabrication Times for Welding	30
3.2.2.2	Thermal and Waterjet Cutting	32
3.2.2.3	Time for Flattening Plates	39
3.2.2.4	Surface Preparation Time	39
3.2.2.5	Painting Time	40
3.2.2.6	Times of Hand Cutting and Machine Grinding of Strut Ends	40
3.2.2.7	Cost of Intumescent Painting	40
3.2.3	Total Cost Function	40
3.3	Conclusion	41
4	Beams and Columns	43
4.1	Comparison of Minimum Volume and Minimum Cost Design of a Welded Box Beam	43
4.1.1	Introduction	43
4.1.2	Minimum Cross-Sectional Area Design	44
4.1.3	Minimum Cost Design	46
4.1.4	Numerical Data and Results	46
4.2	Minimum Cost Design for Fire Resistance of a Welded Box Column and a Welded Box Beam	47
4.2.1	Introduction	47
4.2.2	The Critical Temperature Method	48
4.2.3	A Centrally Compressed Column with Pinned Ends of Welded Square Box Cross-Section	50
4.2.3.1	Overall Buckling Constraint for Ambient Temperature	51
4.2.3.2	Overall Buckling Constraint in Fire	51
4.2.3.3	Local Buckling Constraint	52
4.2.3.4	Cost Function	52
4.2.3.5	Numerical Data and Results	53
4.2.3.6	Cost Including Protection	53
4.2.4	A Simply Supported Uniformly Loaded Welded Box Beam	54
4.2.4.1	Optimum Design	54
4.2.4.2	Optimum Design of Unprotected Beam with Stress Constraint	55
4.2.4.3	Optimum Design of the Protected Beam with Stress Constraint	57

4.2.4.4	Optimum Design of Unprotected Beam with Deflection Constraint	57
4.2.4.5	Optimum Design of the Protected Beam with Deflection Constraint	58
4.2.5	Conclusions.....	58
5	Tubular Trusses.....	61
5.1	Survey of Selected Literature.....	62
5.2	Comparison of Minimum Volume and Minimum Cost Design of a Welded Tubular Truss	63
5.2.1	Introduction.....	63
5.2.2	Minimum Volume Design	63
5.2.3	Minimum Cost Design.....	66
5.2.4	Numerical Data and Results	67
5.2.5	Conclusions.....	68
5.3	Optimum Design of Tubular Trusses for Displacement Constraint.....	68
5.3.1	Introduction.....	69
5.3.2	The Displacement Constraint.....	69
5.3.3	Design for Overall Buckling	69
5.3.4	A Truss Column with Parallel Chords (Fig. 5.2)	70
5.3.5	A Truss Column with Non-parallel Chords (Fig. 5.3)	72
5.4	Volume and Cost Minimization of a Tubular Truss with Non-parallel Chords in the Case of a Displacement-Constraint	75
5.4.1	Introduction.....	75
5.4.2	Minimum Volume Design of the Tubular Truss with Non-parallel Chords.....	76
5.4.3	Check of the Compression Rods for Overall Buckling.....	80
5.4.4	The Cost Function.....	80
5.4.5	Numerical Data	82
5.4.6	The Optimization Process	82
5.4.7	Results of the Optimization	82
5.4.8	Check of Strength of a Tubular Joint	83
5.4.9	Conclusions.....	85
5.5	Minimum Cost Design and Comparison of Tubular Trusses with N- and Cross-(Rhombic)-Bracing	86
5.5.1	Introduction.....	86
5.5.2	The Optimization Process	87
5.5.3	Optimum Design of an N-Type Planar Tubular Truss	88
5.5.3.1	Optimum Height and Cross-Sectional Areas for Stress and Overall Buckling Constraints.....	88
5.5.3.2	Optimum Height and Cross-Sectional Areas for Deflection Constraint	90
5.5.4	Optimum Design of a Rhombic-Type Planar Tubular Truss	91
5.5.4.1	Optimum Height and Cross-Sectional Areas for Stress and Overall Buckling Constraints.....	91

5.5.4.2	Check of a Truss Joint with Available Tubular Profiles.....	94
5.5.4.3	Optimum Height and Cross-Sectional Areas for Deflection Constraint	95
5.5.5	Comparison of the Two Bracing Types	97
5.5.6	Conclusions.....	97
5.6	Optimum Design of a Transmission Line Tower Constructed from Welded Tubular Truss.....	98
5.6.1	Introduction.....	98
5.6.2	Loads	99
5.6.3	Geometric Data (Fig. 5.10, 5.11)	100
5.6.4	Rod Forces from a Horizontal Force $F = 1$	103
5.6.5	Rod Forces from H , $F1$ and $F2$	104
5.6.6	Optimization Process	104
5.6.7	Formulae for Cross-Sectional Areas of Governing Rods.....	104
5.6.8	Formulae for Volume V and Cost K of the Truss in the Function of β	105
5.6.9	Search for β_{opt} for V_{min} and K_{min}	106
5.6.10	Selection of Available Profiles	107
5.6.11	Optimum Mass of the Tower	107
5.6.12	Mass Comparison with the Tower Published by Rao (1995)....	107
6	Frames	109
6.1	Minimum Cost Seismic Design of a Welded Steel Portal Frame with X-Bracing.....	110
6.1.1	Absorbed Energy of CHS and SHS Braces Cyclically Loaded in Tension-Compression	110
6.1.2	Seismic Design of a Portal Frame.....	116
6.1.2.1	Calculation of the Seismic Force	116
6.1.2.2	Normal Forces and Bending Moments in Vertical Frames (Fig. 6.6)	118
6.1.2.3	Geometric Characteristics of the Square Hollow Section (Fig. 6.7)	119
6.1.2.4	Calculation of the Elastic Sway	120
6.1.2.5	Constraint on Sway Limitation	121
6.1.2.6	Local Buckling Constraints	123
6.1.2.7	Stress Constraint for the Columns	123
6.1.2.8	Stress Constraint for the Beams.....	124
6.1.2.9	Investigation of the Joint of the Beam and Brace	125
6.1.2.10	The Cost Function.....	126
6.1.2.11	Optimization and Results.....	127
6.1.2.12	Conclusions.....	128
6.2	Seismic Design of a V-Braced 3D Multi-storey Steel Frame.....	129
6.2.1	Introduction.....	129
6.2.2	Main Dimensions of the Given Frame	130
6.2.3	Loads	131
6.2.3.1	Vertical Loads	131

6.2.3.2	Seismic Load	131
6.2.4	Design of CHS V-Bracings.....	132
6.2.4.1	Constraint on Tensile Stress	132
6.2.4.2	Constraint on Overall Buckling.....	133
6.2.4.3	Constraint on Strut Slenderness for Seismic Zone	133
6.2.4.4	Constraint on Energy Absorption Capacity	133
6.2.4.5	Design Results	134
6.2.5	Design of Beams.....	135
6.2.6	Design of Columns	137
6.2.7	Design of Joints	139
6.2.7.1	Beam-to-Column Connections	139
6.2.7.2	Joints of Braces.....	140
6.2.8	Conclusions.....	141
7	Stiffened Plates.....	143
7.1	Minimum Cost Design of an Orthogonally Stiffened Welded Steel Plate with a Deflection Constraint.....	144
7.1.1	Introduction.....	144
7.1.2	Residual Welding Deflection from Longitudinal Welds of a Straight Beam	145
7.1.3	Residual Welding Curvatures in an Orthogonally Stiffened Plate	147
7.1.4	The Grid Effect	148
7.1.5	Assembly Desk of Square Symmetry with 4-4 Stiffeners.....	150
7.1.5.1	Solution of the Gridwork from Shrinkage of Welds (Fig. 7.4).....	150
7.1.5.2	Solution of the Gridwork from the Uniformly Distributed Normal Load (Fig. 7.5).....	152
7.1.6	Minimum Cost Design of the Assembly Desk with 4-4 Stiffeners Considering the Grid-Effect	153
7.1.6.1	Stress Constraint.....	153
7.1.6.2	Deflection Constraint.....	154
7.1.6.3	Cost Function.....	155
7.1.6.4	Results of Optimization	156
7.1.7	Minimum Cost Design of the Assembly Desk without Grid Effect	156
7.1.7.1	Stress Constraint.....	156
7.1.7.2	Deflection Constraint.....	157
7.1.7.3	Cost Function.....	158
7.1.7.4	Results of Optimization	158
7.1.8	Conclusions.....	159
7.2	Minimum Cost Design of a Welded Stiffened Steel Sectorial Plate	159
7.2.1	Introduction.....	160
7.2.2	Non-equidistant Tangential Stiffening.....	160
7.2.2.1	Calculation of Stiffener Distances (x_{0i})	160
7.2.2.2	Design of Stiffeners	162

7.2.2.3	Cost Calculation for a Sectorial Stiffened Plate Element.....	164
7.2.3	Equidistant Tangential Stiffening with Stepwise Varying Base Plate Thickness	167
7.2.3.1	Design of Base Plate Thicknesses	167
7.2.3.2	Design of Stiffeners	167
7.2.3.3	Cost Calculation	168
7.2.4	Equidistant Tangential Stiffening Combined with Radial Stiffeners.....	170
7.2.5	Cost of the Unstiffened Plate	172
7.2.6	Conclusions.....	173
7.3	Optimum Design of Welded Stiffened Plate Structure for a Fixed Storage Tank Roof	174
7.3.1	Introduction.....	174
7.3.2	Loads	175
7.3.3	Numerical Data (Fig. 7.11)	175
7.3.4	Design of Sectorial Stiffened Deck Plate Elements	176
7.3.4.1	Cost Calculation for a Sectorial Stiffened Plate Element.....	177
7.3.5	Design of Radial Beams	179
7.3.6	Cost of a Radial Beam	180
7.3.7	Additional Cost	180
7.3.8	Optimization Results.....	181
7.3.9	Conclusions.....	181
7.4	A Circular Floor Constructed from Welded Stiffened Steel Sectorial Plates	182
7.4.1	Introduction.....	182
7.4.2	Problem Formulation	183
7.4.3	Solution Strategy for the Three Optimization Phases	183
7.4.4	Minimum Cost Design of a Sectorial Plate.....	183
7.4.5	Optimum Design of Radial Beams	188
7.4.6	Optimum Number of Sectorial Plates	190
7.4.7	Cost Comparison with an Unstiffened Thick-Base-Plate Version.....	191
7.4.8	Conclusions.....	193
7.5	Minimum Cost Design of a Cellular Plate Loaded by Uniaxial Compression.....	193
7.5.1	Introduction.....	194
7.5.2	The Basic Formulae of Cellular Plates	194
7.5.3	The Overall Buckling Constraint	195
7.5.4	The Cost Function.....	198
7.5.5	The Optimum Design Data and Results.....	199
7.5.6	Conclusions.....	200
7.6	Minimum Cost Design of a Square Box Column with Walls Constructed from Cellular Plates with RHS Stiffeners	200
7.6.1	Introduction	201

7.6.2	Characteristics of Cellular Plates	202
7.6.3	Minimum Cost Design of the Square Box Column	203
7.6.3.1	Constraint on Overall Buckling of a Cellular Plate Wall (Fig. 7.21)	203
7.6.3.2	Constraint on Horizontal Displacement of the Column Top.....	205
7.6.3.3	Numerical Data (Fig. 7.20).....	205
7.6.3.4	Cost Function.....	205
7.6.3.5	Optimization and Results.....	208
7.6.4	Conclusions.....	208
8	Cylindrical and Conical Shells.....	211
8.1	Minimum Cost Design for Various Diameters of a Ring-Stiffened Cylindrical Shell Loaded by External Pressure.....	212
8.1.1	Introduction.....	212
8.1.2	Characteristics of the Optimization Problem	213
8.1.3	Constraint on Shell Buckling	213
8.1.4	Constraint on Ring-Stiffener Buckling	214
8.1.5	The Cost Function.....	215
8.1.6	Results of the Optimization	216
8.1.7	Conclusions.....	218
8.2	Cost Comparison of Optimized Unstiffened Cylindrical and Conical Shells for a Cantilever Column Loaded by Axial Compression and Bending	218
8.2.1	Introduction.....	218
8.2.2	Constraint on Conical Shell Buckling.....	219
8.2.3	The Cost Function.....	221
8.2.4	Numerical Data and Results	222
8.2.5	Conclusions.....	223
8.3	Conical Shell with Non-equidistant Ring-Stiffening Loaded by External Pressure.....	223
8.3.1	Introduction.....	223
8.3.2	Design of Shell Segment Lengths	224
8.3.3	Design of a Ring-Stiffener for Each Shell Segment	225
8.3.4	The Cost Function.....	227
8.3.5	Numerical Data.....	228
8.3.6	Results of the Optimization	228
8.3.7	Conclusions.....	229
Appendix A-D	231
References	251
Subject Index	263